SMARTROC D65 TIER 4 FINAL Maintenance

Translation of the original instructions 2015-12-17 | No: 713991051.3 en

Reference

1

NOTE: Always read the information in the Safety document before starting to use the rig or starting maintenance work.

Table of Contents

1	Refer	ence	. 3
2		ral	
		General	
	2.1.1 2.1.2	Safety Target group and objective	
	2.1.2	Contact details	
	2.1.4	Signs for outsourced components	16
	2.1.5	Dismantling and assembly	
	2.1.6 2.1.7	Long-term storage Scaling	
	2.1.7	Tightening torque in bolted joints	
	2.1.9	Work on painted surfaces	
		Welding	
		Welding CAN BUS	
		Diagnostics	
	2.2 B	attery Environmental considerations regarding batteries	
	2.2.1	Charging the battery	
	2.2.3	Starting with an auxiliary battery	
	2.3 S	teel ropes	23
	2.3.1	Scrapping guidelines for steel cables	
	2.4 A	ir conditioning	29
	2.4.1	Safety	
	2.4.2	Environmental issues when handling refrigerant	
	2.4.3 2.4.4	Changing air filter Diagnostics	
	2.4.4	Diagnostics	30
3		port instructions	
		oisting	
	3.1.1	Single-section boom version	
		ransport	
	3.2.1 3.2.2	Before loading the drill rig onto the transport vehicle Once the drill rig is loaded onto the transport vehicle	
		owing	
4			39
		isplay, application and CCI module	
	4.1.1 4.1.2	Connections Pin configurations	
	4.1.2	LED functions	
		esolver module	
	4.2.1	Connections	
	4.2.2	Pin configurations	41
	4.2.3	LED functions	42
	4.3 l/	O module	43
	4.3.1	Connections	
	4.3.2 4.3.3	Pin configurations	
	4.4 C	perator panel Connections	
	4.5 D 4.5.1	ecoder, operator panel Connections	
	4.5.2	Pin configurations X1 - X6	
		-	

	 4.5.3 Pin configurations X8 - X9 4.5.4 LED functions 		
		. 40	
5	· · · · · · · · · · · · · · · · · · ·		
	5.1 Drill system	. 49	
	5.1.1 RCS		
	5.1.2 Logging in		
	5.2 Overview of menus		
	5.2.1 Menu structure		
	5.3 Settings5.3.1 General and specific settings		
	5.3.2 Parameters		
	5.3.3 Actuations		
	5.4 Direct selection menus	. 57	
	5.4.1 Direct selection menu F1		
	5.4.2 Direct selection menu F2.		
	5.4.3 Direct selection menu F3.5.4.4 Direct selection menu F4.		
	5.4.5 Direct selection menu F5		
	5.5 System		
	5.5.1 Menu System		
	5.5.2 System - Modules		
	5.5.3 System - Levers		
	5.5.4 System - Monitors5.5.5 System - administration		
	5.5.6 Loading new software		
	5.5.7 System - Engine status		
	5.5.8 System - Service Interval		
	5.5.9 System - Configuration5.5.10 System - Rig Options		
	5.6 Logging		
	5.6.1 Logging Menu		
	5.7 Positioning	. 88	
	5.7.1 Positioning menu		
	5.8 Drilling	. 95	
	5.8.1 Menu Drilling	. 95	
	5.9 Rig	112	
	5.9.1 Rig menu	112	
	5.10 RHS	122	
	5.10.1 RHS menu	122	
6	Hydraulic systems	135	
	6.1 Environmental considerations when handling oil		
	6.2 General		
	6.3 Repairing hydraulic components		
	6.4 Replacement of hydraulic hoses		
	6.5 Hydraulic workshops		
	6.6 Filter		
	6.6.1 Return oil filter6.6.2 Breather filter		
7	Feeder	141	
	7.1 Feeder chain tension		
	7.1.1 Feeder chain tension	142	
	7.2 Tension of hoses on the hose drum	142	

	7.3 7.3.1	Climbing chain Lubricating the sprocket wheel and checking the climbing chain cover	
	7.4 7.4.1	Bearing unit and checking the chain guide Replacing the bearing unit (chain feed)	
	7.5	Protective plates	
	7.6	Checking for wear on the sprockets	
	7.7	Sealing disc	
	7.8	Replacing the slide pieces in the holder	
	7.9	Replacement of Slide Bars	
	7.10	Lubricating the feeder	148
8	Tra	ck frames	149
	8.1	Stretching the crawler tracks	149
	8.2	Check torques	150
	8.3	Check for wear	151
	8.3.1		
	8.3.2		
	8.3.3		
	8.3.4 8.3.5		
	8.3.6		
	8.3.7		
9	Dus	t collector (DCT)	155
	9.1	Filter test, dust collector (DCT)	155
	9.2	Adjust the suction capacity	156
	9.3	Dust collector (DCT) filter change	156
10	9.3 Rad	Dust collector (DCT) filter change	
10	Rad	liator	159
10	Rad	liator Environmental issues when handling coolant	159 159
10	Rad	liator	159 159
	Rad 10.1 10.2	liator Environmental issues when handling coolant	159 159 159
	Rad 10.1 10.2 Dies	liator Environmental issues when handling coolant Coolant	159 159 159 161
	Rad 10.1 10.2 Dies 11.1	liator Environmental issues when handling coolant Coolant sel engine	159 159 159 161 161
	Rad 10.1 10.2 Dies 11.1 11.2	liator Environmental issues when handling coolant Coolant sel engine Safety	159 159 159 161 161 161
	Rad 10.1 10.2 Dies 11.1 11.2 11.3	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor	159 159 159 161 161 161 161
	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components	159 159 159 161 161 161 161 161
	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor	159 159 159 161 161 161 161 162 162
	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4. 11.4. 11.4.	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals 2 Air filter for engine and compressor, maintenance 3 Fuel system	159 159 159 161 161 161 161 162 162 163 164
	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4 11.4. 11.4. 11.4.	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals 2 Air filter for engine and compressor, maintenance 3 Fuel system 4 Environmental issues when handling fuel	159 159 159 161 161 161 161 162 162 163 164 166
	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4. 11.4. 11.4. 11.4. 11.4.	liator Environmental issues when handling coolant Coolant Sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals	159 159 159 161 161 161 161 162 162 163 164 166 166
	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4. 11.4. 11.4. 11.4. 11.4.	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals 2 Air filter for engine and compressor, maintenance 3 Fuel system 4 Environmental issues when handling fuel 5 Fuel tank brackets	159 159 161 161 161 161 161 162 163 164 166 166 167
	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	liator Environmental issues when handling coolant Coolant Sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals	159 159 161 161 161 161 161 162 162 163 164 166 166 167 167
11	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals 2 Air filter for engine and compressor, maintenance 3 Fuel system 4 Environmental issues when handling fuel 5 Fuel tank brackets 6 Draining the fuel tank	159 159 161 161 161 161 161 162 162 163 164 166 166 166 167 167 169
11	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals 2 Air filter for engine and compressor, maintenance 3 Fuel system 4 Environmental issues when handling fuel 5 Fuel tank brackets 6 Draining the fuel tank 7 Drive belt	159 159 161 161 161 161 162 162 162 163 164 166 166 166 167 167 169
11	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals 2 Air filter for engine and compressor, maintenance 3 Fuel system 4 Environmental issues when handling fuel 5 Fuel tank brackets 6 Draining the fuel tank	159 159 161 161 161 161 161 162 162 163 164 166 166 167 167 167 169 171 171
11	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	liator Environmental issues when handling coolant Coolant	159 159 161 161 161 161 161 162 162 163 164 166 166 166 167 167 169 171 171 171
11	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	liator Environmental issues when handling coolant Coolant sel engine Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals 2 Air filter for engine and compressor, service intervals 3 Fuel system 4 Environmental issues when handling fuel 5 Fuel tank brackets 6 Draining the fuel tank 7 Drive belt 8 For further instructions, see separate instructions for the diesel engine mpressor and air system Safety Compressor description	159 159 159 161 161 161 161 161 162 163 164 166 166 167 167 167 169 171 171 171 174
11	Rad 10.1 10.2 Dies 11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	liator Environmental issues when handling coolant Coolant Safety Environmental issues when handling oil Oil for the diesel motor Maintenance of components 1 Air filter for engine and compressor, service intervals 2 Air filter for engine and compressor, maintenance 3 Fuel system 4 Environmental issues when handling fuel 5 Fuel tank brackets 6 Draining the fuel tank 7 Drive belt 8 For further instructions, see separate instructions for the diesel engine mpressor and air system Safety	159 159 159 161 161 161 161 161 162 162 163 164 166 166 167 167 167 167 171 171 171 174 174 175

12.3.4 Checking the oil level	175
12.3.5 Changing oil and oil filter	176
12.3.6 Changing to new type of oil	
12.3.7 Cleaning the oil cooler	
12.3.8 Test pressurising the safety valve	
12.3.9 Checking the pressure sensor B456	
12.3.10 Checking the start protection	
12.3.11 Checking the minimum charge pressure	180
12.4 Control system	180
12.4.1 System description	180
12.4.2 Setting the percussion pressure	181
13 Oil and fuel	. 183
13.1 Environmental issues when handling fuel	
13.2 Filling fuel	183
13.3 DEF (Diesel Exhaust Fluid)	184
13.3.1 Filling DEF (Diesel Exhaust Fluid)	
13.3.2 Storing DEF (Diesel Exhaust Fluid)	
13.4 Environmental considerations when handling oil	
13.5 Compressor oil	
13.6 Oil sampling	186
13.7 Hydraulic oil	186
13.8 Lubrication	187
13.9 For engine oil and fuel, see chapter "Diesel engine"	188
13.10Draining the fluids	
13.10.1 Draining DEF (Diesel Exhaust Fluid)	
13.11Recommended oils and lubricants	
13.11.1 Engine oil	
13.11.2 Hydraulic oil	
13.11.3 Lubricating oil tank (ECL) (ECG) (HECL)	
13.11.4 Grease nipples and CLS	
13.11.5 Rotation unit	
13.11.6 Traction gears, carrier rollers	
13.11.7 Oil recommendations for two-stage compressor	
13.11.8 Coolant	
14 Options	. 193
14.1 GPS	
14.1.1 General	
14.1.2 General data	
14.2 Service equipment	195
14.2.1 Service tool bag RCS	195
14.2.2 Checking the power supply and the CAN network	196
14.2.3 I/O module	198
14.2.4 Resolver module	
14.2.5 Replacing the module	205
14.3 RC - Reverse Circulation	205
14.3.1 General	205
14.3.2 Lubrication	
14.3.3 Maintenance of components	
14.3.4 Blow adapters	
14.3.5 Metzke Blowdown Valve	
14.3.6 Fault finding in the event of air leakage	
14.3.7 Conversion to normal drilling	215
14.4 Fire suppression system	

14.4.1	Daily checks and maintenance	216
14.4.2	Annual maintenance	216
14.4.3	Electric Welding, Steam Cleaning and High Pressure Cleaning	216
14.5 S	ervice Winch	216
14.5.1	Cleaning	216
14.5.2	Transmission	217
14.5.3	Disengagement device	217
14.5.4	Adjusting - Drum brake	218
14.5.5	Cable	218

2 General

2.1 General

2.1.1 Safety

When maintenance work is carried out on the rig, observe the following points:

- Never carry out service or maintenance work while the drill rig is running.
- To prevent personal injury during service and maintenance work, all components that can be brought into motion or fall down must be thoroughly secured.
- Ensure that the hydraulic and pneumatic systems are depressurised before starting work on them.
- All controls must be inactivated during service and maintenance.
- When changing hydraulic hoses, ensure they are replaced with hydraulic hoses fitted with the correct crimp couplings of correct quality and dimension. All pressurised hydraulic hoses have crimped couplings and should therefore be purchased ready made from Atlas Copco. Quality classes and hose dimensions are specified in the spare parts catalogue. Ensure also that all hose connections are clean, undamaged and securely tightened.

2.1.2 Target group and objective

NOTE: This chapter (General) contains general recommendations for maintenance of the drill rig and its peripheral equipment. This means that certain sections may not be fully adapted to individual components.

The maintenance instructions are intended for mechanics and personnel in maintenance and service. The user should have undergone Atlas Copco's training courses for the equipment concerned.

The objective of these maintenance instructions is to detect and rectify faults at an early stage so that breakdowns, costly secondary damage and accidents can be prevented. Regular maintenance is a precondition for planning necessary interruptions in operation such as reconditioning and repairs. This allows maintenance to be carried out when most suitable with regard to production instead of causing complete breakdown.

Country	Address	Phone and fax number
Argentina	Estados Unidos 5335 B1667JHQ Malvinas Argentinas Buenos Aires	Phone: +54 - (0) 3327 43 18 00 Fax: +54 - (0)3327 - 43 18 66
Australia	P O Box 6134 Delivery Centre Blacktown NSW 2148	Phone: + 61 - (0)2 - 9621 9700 Fax: + 61 - (0)2 - 9621 9813
Austria	Postfach 108 A-1111 Wien	Phone: + 43- (0)1 -76 01 20

2.1.3 Contact details

Country	Address	Phone and fax number
		Fax: + 43 - (0)1 - 76 01 24 16
Bolivia	P.O. Box 290 Santa Cruz de la Sierra	Phone: + 591 - (0)2 - 211 20 00 Fax: + 591 - 0(2) - 211 78 01
Brazil	P O Box 1080 Barueri - SP 06460-970	Phone: + 55 - (0)11 - 41 96 87 00 Fax: + 55 - (0)11 - 41 95 37 22
Bulgaria	7, Iskarsko Shousse Blvd. Build- ing 3, Office 4 1528 Sofia, Bulgaria	
Canada	1025 Tristar Drive Mississauga Ontario, L5T 1L8	Phone: + 1 - 289 - 673 67 11 Fax: + 1 - 289 - 562 01 00
Chile	Panamericana Norte 5001 - Conchali Santiago, Chile 6553935 Conchali	Phone: + 56 - (0)2 - 442 36 00 Fax: + 56 -(0)2 - 623 44 60
China 1	No 2 HengTai Road Nanjing Economic & Technological Development Zone Nanjing Postal code 210038	Phone: + 86 -(0) 25 - 85 75 75 00 Fax: + 86 - (0) 25 - 85 75 75 30
China 2	No. 12 Kun Ming Hu Street Shenyang Economic & Technological De- velopment Zone CN-Shenyang 110027	Phone: + 86 -(0) 24 - 25 81 17 19 Fax: + 86 - (0) 24 - 25 81 18 67
CMT International	S-105 23 Stockholm	Phone: + 46 - (0)8 - 743 80 00 Fax: + 46 - (0)8 - 702 21 29
Colombia	A.A. 95310 Santafé de Bogotá, D.C.	Phone: +57 - (0)1 -419 92 00 Fax: +57 - (0)1 - 419 92 22
Czech Republic	Prumyslova 10 Praha 10, Post Code 102 00	Phone: + 420 - (0)2 - 25 43 42 20 Fax: + 420 - (0)2 - 25 43 42 22
Egypt	520 El-Obour Market Cairo	Phone: + 20 - (0)2 - 461 00 337 Fax: + 20 - (0)2 - 461 00 341
Finland	Tuupakankuja 1 SF-01740 Vantaa	Phone: + 358 - (0)2 - 07 18 94 35 Fax: + 358 - (0)2 - 07 18 94 02
France	BP 27055 Saint Ouen l'Aumône FR-95052	Phone: + 33 - (0)1 - 39 09 30 00 Fax: + 33 - (0)1 - 39 09 30 22

Country	Address	Phone and fax number
	Cergy Pontoise Cedex	
Germany	Postfach 10 02 25 D-46002 Es- sen	Phone: + 49 - (0)201 - 217 70 Fax: + 49 - (0)201 - 21 77 360
Ghana	P O B 10071 Accra North	Phone: + 233- (0) 302 77 45 12 Fax: + 233 - (0) 302 77 61 47
Great Britain	Swallowdale Lane Hemel Hempstead Herts. HP2 7EA	Phone: + 44 - (0) 1442 - 26 12 01 Fax: + 44 - (0)1442 - 23 35 06
Greece	93, Koropiou - Varis, Avenue Thesi Klossari, GR-194 00 Koropi	Phone: + 30 - (0)210 - 349 96 00 Fax: +30 - (0)210 - 345 47 83
Hong Kong	P O Box 1516 Shatin Central Post Office New Territories	Phone: + 852 - 27 97 66 00 Fax: + 852 - 23 41 43 13
India	Sveanagar Bombay Pune Road Dapodi Pune 411 012	Phone: + 91- (0)20 -39 85 24 15 Fax: + 91 - (0)20 - 27 14 59 48
Indonesia	P O Box 7021/JKS CCE Jakarta 12075	Phone: + 62 - (0) 21 780 10 08 Fax: +62 - (0)21 780 18 37
Iran	PO Box 13145-1311 Tehran 1345654551	Phone: + 98 - (0) 21 -669 377 11 Fax: +98 - (0)21 - 669 273 14
Ireland	Kylemore Road Bluebell Dublin 12	Phone: +353 - (0)1 - 450 59 78 Fax: +353 - (0)1 - 456 7686
Italy	Casella Postale 77 IT-20092 Cinisello Balsamo MI	Phone: + 39 - (0)2 - 61 79 91 Fax: + 39 - (0)2 - 61 79 95 20
Japan	Sumitomo Fudosan Shipa Bldg 4 11F 2-13-4 Shiba, Minato-ku, Tokyo 105-00014	Phone: + 81 - (0)3 - 57 65 78 07 Fax: + 81 - (0)3 - 57 65 31 95
Kazakhstan	Floor 2, 8A Kurmangaliyev Street. 050010 ALMATY	Phone: + 7 - (0)727 - 258 85 34 Fax: + 7 - (0)727 - 258 85 35
Kenya	PO Box 400 90 - 00100 Nairobi	Phone: + 254 - (0) 70 - 305 4000 Fax: + 254 - (0) 20 - 82 54 72 / (0) 20 - 82 52 15

Country	Address	Phone and fax number
Korea	3rd Floor, Seowon Build- ing1515-4 Seocho 3-dong, Seocho-ku Seoul	Phone: + 82 - (0)2 - 21 89 40 00 Fax: + 82 - (0)2 - 522 82 39
Malaysia	26, Jalan Anggerik Mokara 31/47 Kota Kemuning, Section 31 40460 Shah Alam, Selangor West Malaysia	Phone: + 60 - (0)3 - 5123 88 88 Fax: + 60 -(0)3 - 51 23 89 49
Mexico	Apartado Postal Box 104 54000 Tlalnepantla	Phone: + 52 - (0) 55 - 22 82 06 00
	Edo. De Mexico	Fax: + 52 - (0) 55 - 53 90 15 20
Могоссо	P O Box 13 844 20 100 Casab- lanca	Phone: + 212 - (0) 522 -63 40 00 Fax: + 212 - (0) 522 - 60 05 22
Mongolia	Building BP9, Tavan Erdene (MISHEEL) Center, 2nd Khoroo, Khan Uul District, Chinggis Avenue, Ulaanbaatar, Mongolia	Phone: + 976 - (0)11 - 34 49 91 Fax: + 976 - (0)11 - 70 13 02 23
Norway	P O Box 334 N-1401 Ski	Phone: + 47 - (64) 86 03 00 00 Fax: + 47 - 64 - 86 03 30 30
Peru	Apartado 662 Lima 100	Phone: + 51 - (0)1 - 224 86 80 Fax: + 51 - (0)1 - 224 01 53
Philippines	P.O. Box 1373 MCPO 1200 Makati City	Phone: + 63 - (0)2 - 843 05 35 Fax: + 63 - (0)2 - 843 02 42
Poland	Aleja Krakowska 61A Sekocin Nowy PL-05-090 Raszyn	Phone: + 48 - (0) 22 - 572 68 00 Fax: + 48 - (0) 22 - 572 68 09
Portugal	Apartado 14 PT-2796-953 Linda-a-Velha	Phone: + 351 - 21- 416 85 00 Fax: + 351 - 21 - 416 01 66
Russia	15, Vashutinskoe Road, Khimki Moscow Region, 141402	Phone: + 7 - 495 - 933 55 52 Fax: + 7 - 495 - 933 55 58
Saudi Arabia	P O Box 7330 Jeddah 21462	Phone: + 966 - (0)2 - 693 33 57 Fax: + 966 - (0)2 - 693 28 92
Singapore	Jurong Point P O Box 438 Singapore 916415	Phone: + 65 - (66) 68 62 28 11 Fax: + 65 - (66) 68 63 60 98

Country	Address	Phone and fax number
South Africa	P O Box 14110 Witfield 1467	Phone: + 27 - (0)11 - 821 90 00 Fax: + 27 - (0)11 - 821 92 02
Spain	Apartado 43 E-28820 Coslada Madrid	Phone: + 34 - (9)1 - 627 91 00 Fax: + 34 - (9)1 - 627 92 39
Sweden	SE-195 82 Märsta	Phone: + 46 - (0)8 - 58 77 85 00 Fax: + 46 - (0)8 - 59 11 87 82
Switzerland	Büetigenstrasse 80 CH-2557 Studen/Biel	Phone: + 41 - (0)32 - 374 15 00 Fax: + 41 - (0)32 - 374 15 15
Taiwan	P O Box 14-45, Chungli Tao Yuen Hsien	Phone: + 886 - (0)3 - 479 68 38 Fax: + 886 - (0)3 - 479 68 20
Thailand	125 Moo 9 Wellgrow Industrial Estate Bagna Trad Km 36 Bnagwua Bang- pakong Chachoengsao 24180	Phone: + 66 - (0)38 - 56 29 00 Fax: + 66 - (0)38 - 56 29 01
Turkey	Istasyon Mah. Ibisaga Cad. No 6 34940 Tuzla - Istanbul	Phone: + 90 - (0)216 - 581 05 81 Fax: + 90 - (0)216 - 581 05 82
Ukraine	9, Moskovskiy Avenue Building 3 04073 Kiev	Phone: + 380 - (0)44 499 18 70 Fax: + 380 - (0)44 499 18 77
USA	PO Box 1159 Commerce City CO 80022	Phone: + 1 - 303 - 287 88 22 Fax: + 1 - 303 - 217 28 39
Venezuela	Apartado 76111 Caracas 1071	Phone: + 58 - (0)212 - 300 83 00
		Fax: + 58 -(0)212 - 300 83 49
Vietnam	Lot F, Street No 12, Song Than II -	Phone: + 84 - (0) - 127 27 56 699
	Industrial Zone, Di An District, Binh Duong	Fax: + 84 - (0) 650 - 373 84 85
Zambia	P O Box 11291 Chingola	Phone: + 260 - (0)2 - 12 31 12 81 Fax: + 260 - (0)2 - 12 31 38 77
Zimbabwe	P.O. Box CY 935 Causeway	Phone: + 263 - (0)4 - 62 17 63/64/65 Fax: + 263 - (0)4 - 62 17 94

Table 1: Addresses, telephone numbers and fax numbers to Atlas Copco companies

2.1.4 Signs for outsourced components

Signs are placed on the larger components of the drill rig. When ordering spare parts or making enquiries in regard to the drill rig, the type designation and serial number must always be stated. Type designations and serial numbers are specified in a separate document, MI (Machine Identification). Spare parts can always be ordered through Atlas Copco.

2.1.5 Dismantling and assembly

A	CAUTION
	Risk of injury
	Exercise extreme caution when slinging and hoisting heavy objects
►	Can cause personal injury
►	Hoisting must take place at the centre of gravity
►	Only use slings which are intact and designed for the load they shall carry
	Fasten the straps to lifting eyes, when available
	Before transporting in shafts or the like it may be necessary to fully or partially dismantle the drill rig. Observe the following when dismantling, hoisting and assembling:

- Before dismantling, hose the entire rig clean with water and/or detergent containing a grease solvent.
- Observe the strictest cleanliness when dismantling hydraulic, compressed air and water flushing hoses. Immediately plug all hoses, nipples and hydraulic oil pipes, or seal and protect them from dirt in some other suitable way.
- Mark hoses, pipes and other connections, where this has not already been done, to make reassembly easier and prevent mix-ups.
- Use properly secured lifting tackle of generous dimensions.

NOTE: When the drill rig is scrapped, all materials that are harmful to the environment must be disposed of in a manner prescribed by the authorities.

2.1.6 Long-term storage

The following points must be observed for long-term storage of the drill rig. In the event of special conditions e.g. a dusty or corrosive environment, additional measures may be necessary.

- The rig must have protection from rain, snow and strong sunshine.
- Untreated steel surfaces must be rustproofed.
- The water mist system must be drained and rinsed with antifreeze.
- The battery must be disconnected. If the temperature falls below freezing point then the battery must be stored indoors.
- The rock drill's shank adapter must be greased.
- The rock drill's gas accumulator must be drained.
- If the rig is to be shutdown for a long time then the rock should drill should be removed and stored protected.
- Fuel and oil tanks must be filled.

Inspection and maintenance during the shutdown period

The following action must be carried out every month.

- Check oil and coolant levels.
- Start the diesel engine and let it run until normal operating temperature has been reached.
- Operate the rig a few metres back and forth so that the tramming gears are lubricated.
- Operate the tilt cylinders, boom, feeder, drill support and rod handling so that all cylinders reach their end positions.
- Drain condensed water from the hydraulic oil tank and compressor oil tank.

2.1.7 Scaling

When the entire drill rig or part of the rig is to be scrapped, local regulations in force regarding handling, waste management, recycling and destruction must be followed. Collect and dispose of:

- Rest oil and oil spill
- Oil waste such as filters
- Rest fuel and fuel spill
- Rest grease and grease spill
- Batteries
- Discarded refrigerant, air conditioning
- Chemicals such as flushing additives, other additives and coolants
- Metals, e.g. steel and aluminium (metals that are recyclable)
- Plastics and rubber (often marked in various classifications for recycling)
- Electrical components such as cables, electronics
- Emissions cleaning unit

2.1.8 Tightening torque in bolted joints.

All joints are tightened to the torque required by Atlas Copco Standard K 4369 unless otherwise specifically stated. In such cases, this will be specified in the maintenance instructions of the module in question.

Size	Strength class	Torque in Nm.	Tolerance ±
M6	8.8	8	2
M8	8.8	20	5
M10	8.8	41	10
M12	8.8	73	18
M14	8.8	115	25
M16	8.8	185	45
M20	8.8	355	85
M24	8.8	600	150
M12 x 1.25	10.9	135	6
M16 x 1.25	10.9	315	15
M18 x 1.25	10.9	460	20

Size	Strength class	Torque in Nm.	Tolerance ±
M6	12.9	14	3
M8	12.9	34	8
M10	12.9	70	17
M12	12.9	120	30
M14	12.9	195	45
M16	12.9	315	75
M20	12.9	600	150
M24	12.9	1020	250

Table 2: Atlas Copco Standard torques.

2.1.9 Work on painted surfaces

	WARNING
	Serious injury
	This rig has been painted with oxyran ester paint and polyester powder.
•	Substances are formed when the paint is heated which are hazardous to health and amongst other things could cause eczema, eye irritation, respiratory system difficulties and in severe cases asthma or other illnesses.
•	Welding, grinding and other hot work involving paint being heated must only be carried out where sufficient ventilation can be used. In addition, use personal safety equip- ment: compressed air powered breathing protection, eye protection and gloves.

2.1.10 Welding

- Applies to drill rigs equipped with one of the following engines:
 - CAT C13, Tier 4
 - CAT C15, Tier 4

NOTE: It is important to consult Atlas Copco for approval of welding and choice of electrodes.

Connections that must be disconnected prior to welding

- Alternator
- Battery
- All sensors on boom and feeder
- All cables in the cabin
- All connections to electric cabinet, A1
- Engine electronic unit ECM. See the instructions for diesel engine.
- All contacts to GPS and ProCom units.

Points to be observed when welding

- Grind off rust and paint from the area that is to be welded and carefully prepare the joint.
- Weld in a dry area.
- Connect the welding ground cable to a clean surface as close as possible to the welding area. Avoid welding close to bearings and bushes. If these cannot be removed, connect ground cables on both sides of the weld.
- Alterations and reinforcements must not be made without previous consultation with Atlas Copco.
- DO NOT weld the hydraulic oil tank, valve block, compressed air tank, pressure lines or the engine exhaust cleaning unit (CEM).
- See separate instructions for diesel engines for work on the exhaust cleaners soot sensors.
- Welding on the exhaust cleaning unit frame and bracket is prohibited.
- Always keep a fire extinguisher for oil fires near at hand during all types of welding, cutting and grinding. Screen off the work area from flammable materials.
- Always protect hoses, cables and electric components.
- Grind off spatter after welding. If possible, also grind the surface of the weld smooth and treat it with anti-corrosion paint.

Electrode recommendations

Use only intact and clean electrodes that have been stored in a dry place. The generally recommended type of electrode is ESAB OK 48.00, ESAB OK 48.30 or the equivalent in accordance with the standard below:

ISO:	2560 E51 5B 120 20 H
SS:	14 3211 H10
DIN 1913:	E51 55 B10
AWS:	A/SFA 5.1 E 7018

Table 3: Electrode recommendations

The use of MIG welding equipment is perfectly acceptable. The generally recommended type of electrode is ESAB-OK Autrod 12.51 or the equivalent in accordance with the standard below:

SS:	14 3403 3423
DIN 8559:	SG 2
AWS:	A/SFA 5.18: ER 70 S-6

Table 4: MIG electrodes

If in any doubt, contact Atlas Copco for advice.

2.1.11 Welding CAN BUS

Preparations before welding

Disconnect the supply voltage to all modules, both + and -, as follows:

- Cable KC50A is removed from the right-hand rear pillar outside the cabin.
- Cable KC50B is removed from the right-hand rear pillar outside the cabin.

- Cable D530X1 is removed from D530/X1
- Cable D511X25 is removed from D511/X25
- Cable D102X25 is removed from D102/X25
- Cable D510X25 is removed from D510/X25
- Cable D101X25 is removed from D101/X25
- Cable D103X25 is removed from D103/X25
- Cable D512X25 is removed from D512/X25
- Contact P61 is removed from J61 "Customer connection" to the ECM.
- The battery ground cable is removed.

2.1.12 Diagnostics

Fault finding is a logical sequence of activities to locate a fault, thereby making it possible to rectify the fault as soon as possible.

Always try to investigate the location of the fault in order to limit fault finding to a certain system or function.

2.2 Battery

2.2.1 Environmental considerations regarding batteries

	NOTICE
	Environmental effect
	Think of the environment!
	Batteries contain acids and heavy metals. For this reason, expended batteries can be hazardous to the environment and to health.
►	Expended batteries must be sent for destruction in accordance with local regulations.

2.2.2 Charging the battery

WARNING

Serious injury

Risk of fire and explosion

- May cause serious personal injury and damage to property
- Flammable hydrogen gas
- Corrosive fluid
- Avoid naked flames and sparks
- Always detach the negative terminal first, and connect it last

The battery is normally charged by the drill rig's alternator. If the battery is fully discharged for some reason, it must be recharged using a battery charger. Follow the instructions carefully. Cell plugs should be unscrewed but left in the holes during charging.

Explosive gas is formed in the battery during charging. A short circuit, naked flame or spark in the vicinity of the battery could cause a serious explosion. Ensure good ventilation. Always turn off the charge current before disconnecting the clips. If the density has not risen noticeably despite a number of hours of recharging, the battery is probable expended.

Rapid charging, when carried out correctly, will not damage the battery. However, it should not be undertaken too often and is not recommended for old batteries.

Repeated discharging for long periods, especially with low current such as leaving the lights on while the engine is stationary, will impair the service life of the battery. Discharging with high current is not normally harmful. The battery must be left to rest between start attempts, however.

Since the drill rig's 24V electrical system is powered by two 12V batteries in series, the following points should be observed:

- The batteries must have the same capacity (Ah).
- The batteries must be the same age. This is because the charging current required to bring a battery up to a certain voltage changes with age.
- The batteries must not be loaded unevenly.
- Series coupling maintains the same capacity but increases the voltage (double). When 2 x 12V 60Ah batteries are connected in series, the voltage will be 24V but the capacity remains at 60Ah.
- Ensure that the correct voltage is used before connecting a battery charger. Use a 24V charger when recharging both batteries and a 12V charger when charging each battery individually.

Proceed as follows (24V charger)

Before charging

- 1. Inactivate battery isolation switch S300.
- Detach the cable between chassis ground and the negative cable on the battery G1B.
- Connect the positive battery charger cable to the positive terminal on G1A.
- 4. Connect the negative charger cable to the negative terminal on G1B.
- 5. Start the battery charger.

After charging

- 1. Turn off the battery charger
- Detach the battery charger's negative lead from the negative terminal on G1B.
- 3. Detach the battery charger's positive lead from the positive terminal on G1A.
- 4. Connect the cable between chassis ground and the negative terminal on G1B.
- 5. Activate battery isolation switch S300.

Proceed as follows (12V charger)

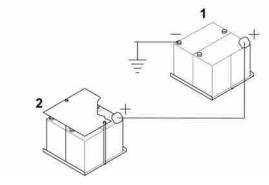
Before charging

1. Turn off the battery isolation switch S300.

- 2. Remove the jumper lead between the negative terminal on battery G1A and the positive terminal on battery G1B.
- 3. Connect the positive battery charger cable to the positive terminal on G1A.
- 4. Connect the batter charger's negative lead to the negative terminal on G1A.
- 5. Start the battery charger.
- 6. Once battery G1A is fully charged: Turn off the battery charger.
- Detach the battery charger's negative lead from the negative terminal on G1A.
- 8. Detach the battery charger's positive lead from the positive terminal on G1A.
- 9. Detach the cable between chassis ground and the negative cable on the battery G1B.
- 10. Repeat steps 3 8 on G1B.

After charging

- 1. Turn off the battery charger.
- 2. Reconnect the jumper lead between the negative terminal on battery G1A and the positive terminal on battery G1B.
- 3. Connect the cable between chassis ground and the negative terminal on G1B.
- 4. Activate battery isolation switch S300.


2.2.3 Starting with an auxiliary battery

NOTE: Owing to the surge of current, the batteries could explode if a fully-charged battery is connected to a completely flat one.

NOTE: The connections to the drill rig's batteries must under no circumstances be broken during operation as this could lead to faults arising in the alternator.

Condition ✓ For this reason, proceed as follows:

1. Check that the auxiliary starting batteries (1) have the same voltage as the batteries on the chassis.

Starting assistance

1	Auxiliary batteries
2	Chassis batteries

- 2. First connect the positive terminal of the auxiliary battery to the positive terminal of the chassis battery (2).
- 3. Then connect the negative terminal of the auxiliary battery (1) to ground on the chassis (not to the chassis battery's negative terminal).
- 4. Once the engine has started, first remove the starter cable between the chassis and the negative terminal on the auxiliary battery (1).
- 5. Then remove the cable between the positive terminals of the batteries.

2.3 Steel ropes

2.3.1 Scrapping guidelines for steel cables

Steel cables should be scrapped when they display any of the following:

- Wire break at attachment
- Occurrence of strand breaks
- Concentrations of wire breaks
- Effects of heat
- Occurrence of wire breaks due to operating time.
- Reduced elasticity
- Decreased cable diameter
- Certain number and type of wire breaks
- Corrosion
- Surface wear
- Deformation of the cable
- Permanent extension of the cable

Wire break at cable mounting

Broken wires at cable ends indicate that they have been heavily loaded and can be caused by faulty end mountings.

Shorten the cable and reattach it. Check that the remaining cable is sufficiently long.

Occurrence of strand breaks

If there are strand breaks, the cable must be scrapped.

Concentrations of wire breaks

If there are concentrations of cable breaks, the cable must be scrapped.

If such concentrations occur within a length less than 60 cm or on an individual strand, the cable must be scrapped.

If this is the case, the cable must be scrapped even if the number of wire breaks is less than the maximum specified in the table.

Effects of heat

Cables exposed to extreme heat must be scrapped. The effects of heat can be established through annealing colour.

Occurrence of wire breaks due to operating time.

Wire breaks occur first after a certain operating time depending on operating conditions and subsequently occur more frequently.

If this is the case, the number of wire breaks in relation to the operating time should be determined and documented.

This can then be used to estimate the future increase in wire breaks and the foreseeable time point for scrapping.

Reduced elasticity

Under certain conditions, the cable loses its elasticity.

Reduced elasticity is difficult to detect. If in doubt, consult a specialist.

If the cable has lost elasticity, the following characteristics usually appear:

- Decrease in cable diameter
- Extension of the cable
- No gap between individual wires and between the strands. This is caused by its components being pressed together.
- Fine, brown dust inside the strands.
- Even if there are no visible wire breaks, the cable is noticeably stiffer.
- The cable's diameter decreases more quickly than during normal wear of the individual cable strands.

Reduced elasticity can lead to sudden cable breaks during heavy loads. The cable should be scrapped.

Decrease in cable diameter

Decrease in cable diameter through material fatigue in the cable can have the following causes:

- Inner surface wear and surface wear nicks
- Inner surface wear through friction between the strands and wires in the cable
- Fatigue of plastic core
- Break in steel core
- Break in inner layer in multi-strand cable

If the cable's diameter decreases more than 10% in relation to the nominal diameter of the cable, it must be scrapped.

It should be scrapped even if no wire breaks have been detected.

Certain number and type of wire breaks

The cable drums are designed in such a way that the cables do not have an unlimited service life. Wire breaks can therefore occur during operation.

On 6 and 8-strand cables, wire breaks are primarily superficial.

The cables should be scrapped if the number of wire breaks specified in the table have been detected

Number of load-	Number of visible wire breaks ² that require scrapping	
bearing wires in the outer strand ¹	Machine groups M1 and M2	
n	Cross lay	Equal lay

	Over a length of		Over a length of	
	6d	30d	6d	30d
201 - 220	9	18	4	9
221 - 240	10	19	5	10

d = Cable diameter

¹ = Filler wire is not considered load-bearing.

In cables with several layers of strands, only the outer, visible layer is considered.

In cables with steel cores, the core is regarded as an inner strand and is not included.

 2 = In the event of a wire break, two ends can be visible.

Corrosion

Corrosion is especially problematic in marine environments and in areas where the air is polluted by industrial emissions.

Corrosion can reduce operational strength through rust spots and static tensile strength through a reduction in the cross section of the metallic cable.

Severe corrosion can reduce elasticity.

Outer corrosion: Outer corrosion can be easily detected through visual examination.

Inner corrosion: Inner corrosion is more difficult to detect. Inner corrosion is characterised by the following:

- Absence of gap between the strands in the outer layer of the cable, often in combination with wire breaks in the strands.
- The cable diameter varies.

The parts of the cable that are bent over discs usually have a decreased diameter. At any sign of corrosion, the cable should be checked by an authorised person. If inner corrosion is detected, the cable must be scrapped.

Surface wear

Inner surface wear is caused by friction between the wires and the strands.

Outer surface wear is caused by friction between the cable drums (rolls) and the cable under pressure (acceleration and braking). Outer surface wear is visible through the formation of reflected images on the outer wires.

Surface wear is increased through faulty or no lubrication, thereby increasing the effect of dirt and dust.

Surface wear reduces static tensile strength through reduction in the cable's metallic cross section and dynamic strength through surface wear nicks.

If the cable's diameter decreases more than 7% in relation to the nominal diameter of the cable, it must be scrapped.

It should then be scrapped even if no wire breaks have been detected.

Deformation of the cable

Deformations are characterised by visible deviations from the cable's normal form that lead to uneven voltage distribution in the cable.

The following are the primary types of deformations:

Wire displacement

- Strand displacement
- Waviness
- Cracking
- Kinks
- Flattening
- Local cable diameter decrease
- Local cable diameter increase
- Basket formation

Wire displacement

Individual wires or wire groups stick out like hairpins on the side facing away from the drum. Wire displacement is caused by spasmodic loads.

Cables with wire displacement must be scrapped.

Example of wire displacement

Strand displacement

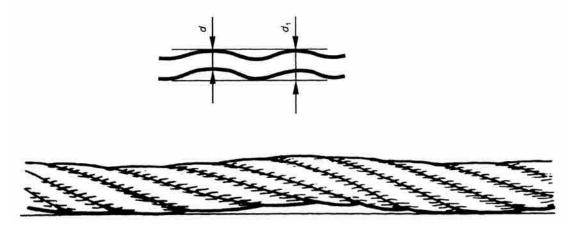
Strand displacement, which often occurs in conjunction with basket formation, is when the steel core pushes out between the strands.

Cables with strand displacement must be scrapped.

Waviness

Waviness is a deformation that gives the cable's longitudinal axis a helical curve.

Even though wave formation does not necessarily cause weakening of the cable, such a deformation can cause a pulsing movement.


After a long time of operation, this can increase surface wear and wire breaks.

In the event of waviness, the cable should be scrapped if

 $d_1 > 4d/3$

d = Cable's nominal diameter

 d_1 = Diameter of the circle that would be formed if the cable were not deformed. Check over a length not exceeding 25d.

Waviness

Cracks

Cracks are deformations through outer, violent influences.

Cables with cracks must be scrapped.

Cracks

Kinks

A kink is a deformation caused by the cable forming an eye that is contracted with out the cable being able to rotate around its own axle.

Strand pitch is altered, which leads a great deal of surface wear and, in severe cases, very low static strength.

Cables with kinks must be scrapped.

Kinks

Flattening

Flattening is deformation caused by mechanical damage. Cables with severe flattening must be scrapped.

Flattening

Local cable diameter decrease

Local decrease in cable diameter is often connected to core break.

The area near the end attachments must be inspected especially carefully as it can be difficult to detect cable diameter decrease at these spots.

Cables with severe cable diameter decrease must be scrapped.

Local cable diameter decrease

Local cable diameter increase

This means repeated thickening of the cable over a long stretch. At the thicker spots, the core pushes out of the cable and causes unevenness of the outer strands.

Cables with severe cable diameter increase must be scrapped.

Local cable diameter increase

Basket formation

Basket formation occurs on cables with steel reinforcement or steel core when the outer strand layer becomes longer than the inner strand layer.

Basket formation can also be caused by shock loads on slack cables.

Cables with basket formation must be scrapped.

Basket formation

2.4 Air conditioning

2.4.1 Safety

WARNING
Serious injury
Refrigerant under pressure
Risk of serious personal injury
Service of refrigerant must always be carried out by authorised personnel

NOTE: Do not use the system with too little refrigerant, leakage or any other fault until it is rectified. Otherwise, there is risk of the compressor breaking down.

2.4.2 Environmental issues when handling refrigerant

NOTICE

Environmental effect

Care for the environment!

- Discarding air conditioning refrigerant can be hazardous to the environment.
- Air conditioning refrigerant must be sent for destruction in accordance with applicable local regulations.

B R

2.4.3 Changing air filter

Filter - air conditioning.

Changing the main filter:

- Undo the screws around the cover (C).
- Open the cover and lift out the filter.
- Fit the new filter in place and screw back the cover.

Changing the prefilter:

- Undo the screws on the louvre cover (D).
- Lift away the louvre cover and the filter.
- Fit the new filter in place and screw back the louvre cover.

Changing the circulation filters:

- Undo the screws on the covers (b).
- Lift away the covers and the filters.
- Fit the new filters in place and screw back the covers.

2.4.4 Diagnostics

No cooling

Check the following points:

- Fuses, electric connections, compressor ground, electromagnets, switches and pressure switches
- V-belt and compressor
- Expansion valve and temperature control valve
- Coolant hoses

Poor cooling

Check the following points:

- Fresh-air fan and V-belt tension
- That the air does not evade the evaporator in the unit
- That the evaporator and condenser are not clogged by rubbish and the filter in the air intake is not dirty
- That the expansion valve capillary tube is firmly against the evaporator outlet pipe
- That the thermostat does not cut out too early

Uneven cooling

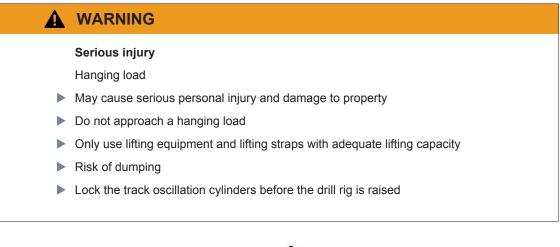
Check the following points:

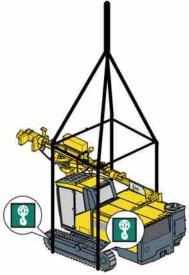
- That connections to circuit breaker, magnetic coupling or pressure switch are not loose
- That the expansion valve is not clogged
- That the system is filled and the thermostat is not defective

Abnormal noise

Check the following points:

- That the multi-V-belt to the compressor is thoroughly tightened and that the compressor retaining bolts are tightened.
- That the system is filled sufficiently and not overfull
- That the expansion valve is in working order
- That the airflow across the evaporator is sufficient
- That the condenser is clean and the airflow is sufficient

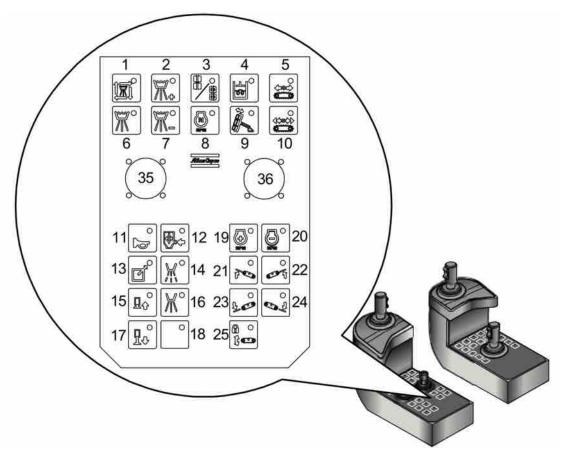

Abnormal system noise is often connected to incorrectly assembled components. If the compressor is noisy at a certain speed, for instance, and the noise disappears when the speed increases or decreases, there is probably nothing wrong with the compressor itself.


The difference between the pressure on the suction side and the pressure side also affects the level of noise. A compressor with low suction makes more noise than a compressor with high suction. Likewise, a compressor with high high-pressure makes more noise because it puts more load on bearings, etc.

3 Transport instructions

3.1 Hoisting

3.1.1 Single-section boom version



Hoisting

Make sure the chassis is not damaged when you position the feed in the transport/hoisting position.

- Run the rock drill/rotation unit to is rearmost (upper) position
- Use the boom and feed controls to lower the feed onto the feed support.
- Make sure that the hydraulic jack is retracted.
- **Track oscillation cylinders** to LOCKED position (Button 25).

Left control panel

- Make sure that none of the hoses, controls or any other components can fasten or sustain damage when the hoisting slings are tensioned and under load.
- Place the hoisting slings under both crawler tracks at points A and B as shown in the illustration Hoisting.


3.2 Transport

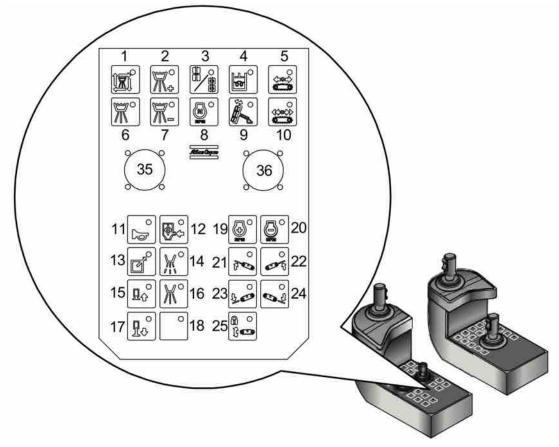
WARNING

Serious injury

Risk of dumping

- May cause serious personal injury and damage to property
- Lock the track oscillation cylinders before the drill rig is raised
- > Transportation equipment must be adapted for the dimensions and weight of the drill rig

Normal tramming position


3.2.1 Before loading the drill rig onto the transport vehicle

Run the rotation unit/rock drill to its lowest position.

Use the boom and feed controls alternately to bring the feed down into the transport position and firmly down on its jack (A).

3.2.2 Once the drill rig is loaded onto the transport vehicle

- Lower the hydraulic jack (extra equipment).
- Track oscillation cylinders to LOCKED position (Button 25).

Left control panel

- Support the feed beam against the vehicle to prevent overloading.
- Switch off the diesel engine.
- Strap the drill rig securely onto the vehicle.

Attach straps or chains to the lifting eyes on the machine and vehicle.

3.3 Towing

WARNING

Serious injury

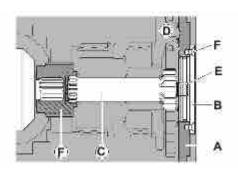
Danger of moving parts

- May cause serious personal injury and damage to property
- Position a wedge under both of the track frames, before disengaging the traction gears

NOTICE

Risk of damage

Risk of damage if the machine is towed with low oil level in the traction gears.

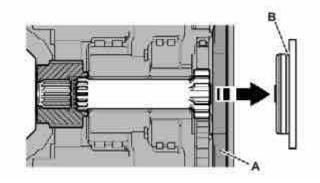

Make sure that there is sufficient oil in the traction gears before disengagement takes place.

NOTICE

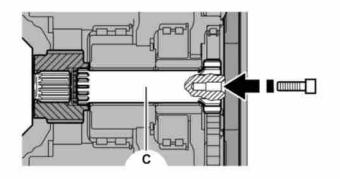
Risk of damage

The traction gears may be damaged if dirt or mud gets into them.

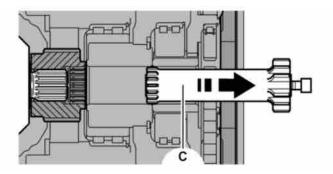
Make sure that the track frames are completely free of all dirt and mud before the cover plate for the traction gears is removed.



Traction gear for track frames

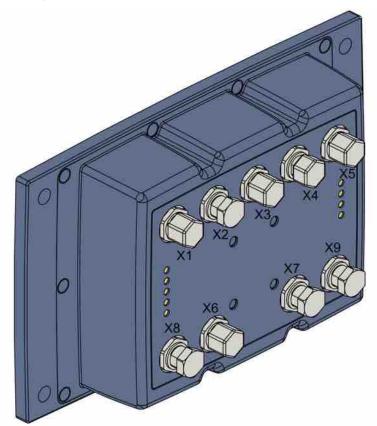

А	Cover for traction gear
В	Cover
С	Centre shaft
D	O-ring
Е	Cylinder barrel
F	Countersunk screw
G	Carrier

Before the machine can be towed, the centre shaft (C) on both track frames must be disengaged.


- Condition ✓ The track frames must be clean and completely free of dirt and mud before the cover plate (B) for the traction gears is removed.
 - 1. Remove the four countersunk screws (F) from the cover plate (B).

- 2. Screw two 80 mm M8 screws into the threaded holes in the cover plate (B). Screw the screws in evenly so that the cover plate (B) is pressed away from the cover for the traction gear.
- 3. Remove the cover plate (B), O-ring (D) and cylinder barrel (E).
- 4. Screw an 80 mm M8 screw into the thread in the centre of the centre shaft (C).

5. Use the screw head to pull out the centre shaft.



- 6. Remove and check the condition of the O-ring (D). Replace it with a new O-ring if it is damaged or worn.
- 7. Refit the O-ring (D) and the cylinder barrel (E). Reattach the cover plate (B) in position using the 4 countersunk screws.
- 8. Proceed in the same way on the other track frame.

The machine can now be towed.

4 Hardware RCS

4.1 Display, application and CCI module

Display/Application/CCI module

Contact	Function
X1	Power supply module
X2	CAN network 2
X3, X4	CAN network 1
X5	Address plug
X6	COM2
Х7	USB/COM1
X8	Video
Х9	Ethernet

Table 5: Functions of connections

Contact	Туре	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
X1	Four-pin M12, male contact	+24V supply voltage	+24V supply voltage	GND	GND	
X2, X3, X4	Five-pin M12, male contact (X2, X4) or fe- male contact (X3)	NC (Not Connected)	CAN +24V	CAN GND	CAN Hi	CAN
X5	Five-pin M12, male contact	Bit 2	Bit 1	GND	Bit 0	Bit 3

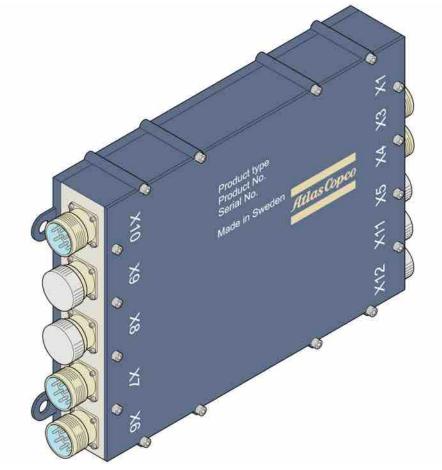
4.1.2 Pin configurations

Each address bit is connected to GND (ground). The address plug can be connected to four different addresses.

4.1.3 LED functions

Module status (D16)

- LED colour is green.
- When the system starts the LED flashes twice per second.
- When CAN communication is in progress the LED will flash once per second.
- When there is no CAN communication or if the I/O module is starting up the LED will flash five times per second.


CAN status network 1 (D14) and network 2 (D15)

- LED colour is red.
- The LED flashes when communication is established.
- Black LED means no communication.

Supply voltage CAN network 1 (D19) and CAN network 2 (D20)

- LED colour is green.
- Fixed green glow means supply voltage maintained.
- Black LED means no supply voltage.

4.2 Resolver module

Resolver module

4.2.1 Connections

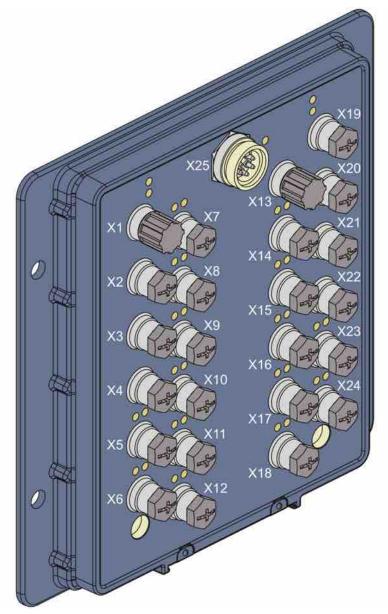
Contact	Function
X1	Power supply module
X3, X4	CAN network
X5	Address plug
X6-X9	Resolver inputs
X10	Encoder input
X11, X12	Analogue inputs

Table 6: Functions of connections

4.2.2 Pin configurations

Contact	Туре	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6
X1	Four-pin M12, male contact	+24V sup- ply voltage	+24V sup- ply voltage	GND	GND		

Contact	Туре	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6
X3, X4	Five-pin M12, male contact (X3) or female contact (X4)	NC (Not Connec- ted)	CAN +24V	CAN GND	CAN Hi	CAN Lo	
X5	Five-pin M12, male contact	Bit 2	Bit 1	GND	Bit 0	Bit 3	
	Each address b four different ac		ed to GND (g	round). The	address plug	l can be conr	nected to
X6, X7, X9	Six-pin conin- verse, male contact	Ref +	Ref -	Sine sig- nal	Sine GND	Cosine signal	Cosine GND
X10	Six-pin conin- verse, male contact	+15V	+15V	Signal A	GND	Signal B	GND
X11, X12	Five-pin M12, male contact	GND	+15V	NC	NC	Cosine GND	


4.2.3 LED functions

Status View

Green

- When the system starts the LED flashes twice per second.
- When CAN communication is in progress the LED will flash once per second.
- When there is no CAN communication or if the I/O module is starting up the LED will flash five times per second.
- Red
 - The LED flashes in the event of CAN communication error.

4.3 I/O module

I/O module

4.3.1 Connections

Contact	Function
X1, X19	CAN in (X1), CAN out (X19)
X2, X3, X4, X20, X21, X22	Analogue inputs
X5, X23	DI/DO NPN Encoder
X7, X8, X9, X10, X14, X15, X16, X24	DI/DO PWM
X11, X12, X17, X18	DI/DO PNP
X13	Address plug

Contact	Function
X25	Power supply module

Table 7: Functions of connections

4.3.2 Pin configurations

Contact	Туре	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
X1, X19	Five-pin M12, male contact	Screen (connected to ground)	CAN +24V	CAN GND	CAN Hi	CAN Lo
X2, X3, X4, X20, X21, X22	Five-pin M12, female contact	+24V supply voltage sensor	0 - 5V input signal	GND	0 - 20mA in- put A	+5V supply voltage sensor
X5, X23	Five-pin M12, female contact	+12V supply voltage sensor	Input or out- put B	GND	Input or out- put A	GND
X7, X8, X9, X10, X14, X15, X16, X24	Five-pin M12, female contact	+24V supply voltage	Output B	GND	Output A	GND
	Output currer	o outputs per co nt is between 50 e is adjustable	0mA and 2.0A.	·		at a time.
X11, X12, X17, X18	Five-pin M12, female contact	+24V supply voltage	Input or out- put B	GND	Input or out- put A	GND
X13	Five-pin M12, male contact	Bit 2	Bit 1	GND	Bit 0	Bit 3
	to four differe	s bit is connecte nt addresses. for baud rate. U		·		
X25	Five-pin 7/8", male contact	+24V supply voltage	+24V supply voltage	GND	GND	+24V logic voltage for CPU and communica- tion

The current output for the contact is up to 18A.

4.3.3 LED functions

Module status (X25)

- When the system starts the LED flashes twice per second.
- When CAN communication is in progress the LED will flash once per second.

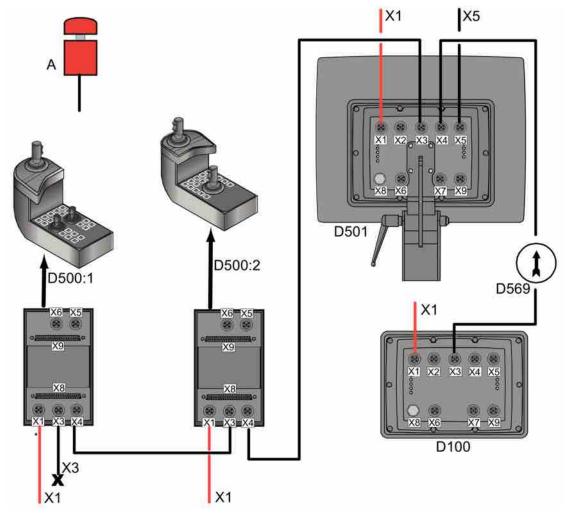
- When there is no CAN communication or if the I/O module is starting up the LED will flash five times per second.
- 5V supply for CAN control.
- 24V supply for valves and sensors.

Analogue inputs

- Green LED indicates 5V and 24V supply voltage.
- Red LED indicates short circuit to ground of sensor supply voltage.

The supply voltage must be reset after one second when the short circuit is broken.

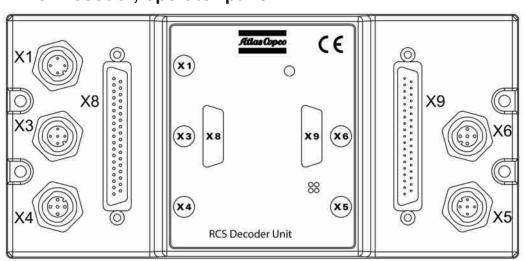
Digital inputs and outputs


NOTE: The left-hand LED has a signal from pin 2 (B) and the right-hand LED has a signal from pin 4 (A).

Function/Con- tact	Black	Green	Orange*	Red
PNP output	Load not activated	Open circuit Output not activ- ated	Output activated and actuated	Output activated, but short circuit to ground
PNP input	Input voltage low No signal on input	Voltage on input Input active	Does not arise if the port is initial- ised as input.	Does not arise if the port is initial- ised as input.
NPN output	Not activated	Output activated externally Short circuit to ground.	The output is ac- tivated and actu- ated	Output activated, but short circuit to ground
NPN input	No signal Input voltage too high.	Input activated (closed to ground)	Does not arise if the port is initial- ised as input.	Does not arise if the port is initial- ised as input.
PWM output	Not activated Load present	Open circuit Output not activ- ated	Output activated and actuated	Output activated (low current) or short circuit to ground
PWM input	Input voltage low No signal on input	Voltage on input Input active	Does not arise if the port is initial- ised as input.	Does not arise if the port is initial- ised as input.

* Orange appears by means of the LED emitting red and green simultaneously.

4.4 Operator panel



Operator panel

Contact	Function
X1	Supply voltage
X3	CAN network end plug
X4	CAN network (to display D501)
X5	Address plug
D569	Aim Device
A	Emergency stop (NOT CAN network)

Table 8: Functions of connections

4.5 Decoder, operator panel

Decoder, operator panel

4.5.1 Connections

Contact	Function
X1	Supply voltage
X3	Can network
X4	Can network
X5	Address plug
X6	RS232
X8, X9	Input/output contacts

Table 9: Functions of connections

4.5.2 Pin configurations X1 - X6

Contact	Туре	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
X1	Four-pin M12, male contact	+24V supply voltage	+24V supply voltage	GND	GND	
Х3	Five-pin M12, male contact	NC (Not Connected)	CAN +24V	CAN GND	CAN Hi	CAN Lo
X4	Five-pin M12, female contact	NC (Not Connected)	CAN +24V	CAN GND	CAN Hi	CAN Lo
X5	Five-pin M12, male contact	ID 2	ID 1	GND	ID 0	ID 3

Contact	Туре	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5
		s ID is connectent addresses.	ed to GND (gro	und). The addi	ress plug can b	e connected
X6	Five-pin M12, male contact	RXD 1	GND	TXD 1	RXD 0	TXD 0

4.5.3 Pin configurations X8 - X9

Pin	X8	Х9	Pin	X8	X9
1	GND	LED FEED	20	Ain 10	LED OUT 19
2	Ain 1	LED OUT 1	21	GND	LED OUT 20
3	POT FEED	LED OUT 4	22	Din 1	LED OUT 21
4	Ain 2	LED OUT 3	23	Din 2	LED OUT 22
5	GND	LED OUT 4	24	Din 3	LED OUT 23
6	Ain 3	LED OUT 5	25	GND	LED OUT 24
7	POT FEED	LED OUT 4	26	Din 4	LED OUT 25
8	Ain 4	LED OUT 3	27	Din 5	LED FEED
8	GND	LED OUT 4	28	Din 6	Kbd IN 1
10	Ain 5	LED OUT 9	29	GND	Kbd IN 2
11	POT FEED	LED OUT 4	30	Din 7	Kbd IN 3
12	Ain 6	LED OUT 3	31	Din 8	Kbd IN 4
13	GND	LED OUT 4	32	Din 9	Kbd IN 5
14	Ain 7	LED OUT 13	33	GND	Kbd OUT 1
15	POT FEED	LED OUT 4	34	Din 10	Kbd OUT 2
16	Ain 8	LED OUT 3	35	Din 11	Kbd OUT 3
17	GND	LED OUT 4	36	Din 12	Kbd OUT 4
18	Ain 9	LED OUT 17	37	GND	Kbd OUT 5
19	POT FEED	LED OUT 4			

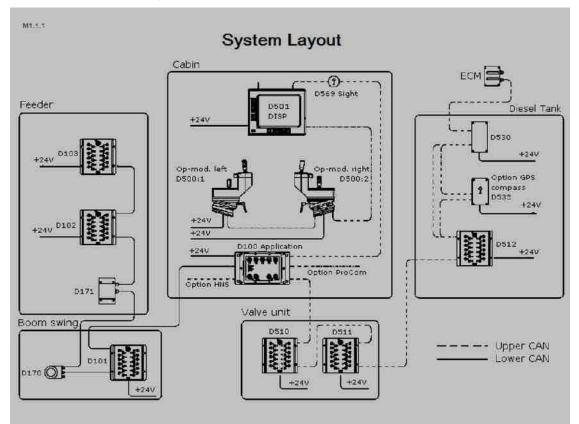
4.5.4 LED functions

Status View

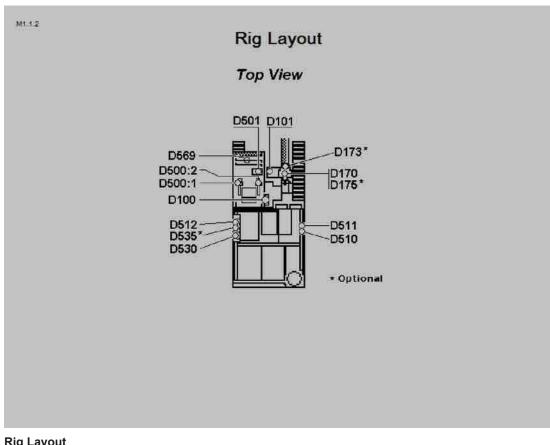
- When the system starts the LED flashes twice per second.
- When CAN communication is in progress the LED will flash once per second.
- When there is no CAN communication or if the I/O module is starting up the LED will flash five times per second.

5 RCS drilling system

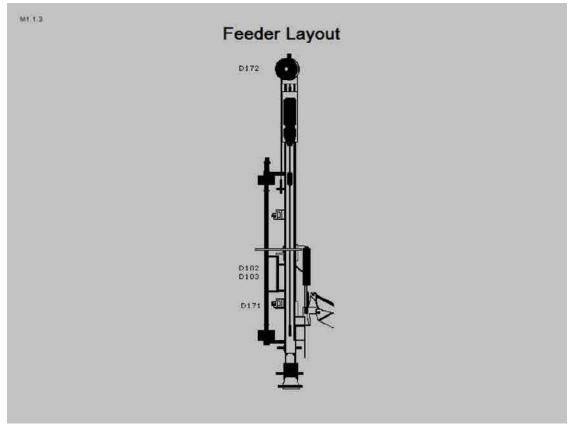
5.1 Drill system


5.1.1 RCS

RCS (Rig Control System) is a system that controls and monitors drilling functions as well as various drill rig functions. The RCS system is based on CAN technology (CAN = Controller Area Network).


The number of electronic modules varies from rig to rig depending on the options it has been equipped with.

- Lever modules 500:1, 500:2. Display D500.
- Application modules: D100
- I/O modules: D101, D102, D510 and D511
- CAN bridge D530


System layout and component locations are shown in the following figures, which are also in the menu system.

System Layout

Feeder Layout

The operator display panel is the main computer that controls all the information to the application module. The application module processes and governs the information from the operator panel, the I/O modules and the resolver module, and provides the correct information to the I/O modules. The I/O modules provide each valve with the correct signal in order to obtain the right motion or function, while they are receiving information from various sensors, e.g. the pressure sensors.

5.1.2 Logging in

NOTE: The service menus in these instructions are intended for service personnel that have completed Atlas Copco's training for the drilling system. Incorrect handling can lead to the system becoming inoperative.

A user code that only service personnel should have access to is required in order to access the service menus. After starting the drilling system, press the Enter button while you are in the start menu.

This will display a box in which you can enter your access code and confirm with Enter. A message **User approved** will be displayed. Press ESC.

Alain 2009-12-07 15:34:37		6	Atlas Copco
Grey scale		User approved	
	System	SE	
1 52			_

Menu, Logging in.

A start screen with different menus is now displayed.

There are four possible access levels when logging in.

- Operator (OP)
- Service (SE)
- Atlas Copco sales (AC)
- Atlas Copco production (ACP)

5.2 Overview of menus

5.2.1 Menu structure

Direct selection menu F1	
Direct selection menu F2.1	
Direct selection menu F2.2	
Direct selection menu F3	
Direct selection menu F3	Performance log
Direct selection menu F4	
Direct selection menu F5	

Main menu

System		
System	Modules	Status View
System	Modules	System layout
System	Modules	Rig Layout
System	Modules	Feeder Layout
System	Levers	
System	Levers	Calibration
System	Guards	
System	Administration	
System	Engine status	
System	Service interval	
System	Configuration	
System	Configuration	Rig Options
Logging		
Logging	Event Log	
Logging	Save	

L a main a			
Logging	MWD		
Logging	Trace Log		
Logging	Signal Log		
Logging	Auxiliary Temperature Logging		
Positioning			
Positioning	Sensors		
Positioning	Sensors	Calibration	
Positioning	Actuations		
Positioning	Parameters		
Positioning	Parameters	Valve parameters	
Positioning	Parameters	Auto parameters	
Drilling	Sensors		
Drilling	Sensors	Calibration	
Drilling	Actuations		
Drilling	Parameters		
Drilling	Parameters	Feed Speed	
Drilling	Parameters	Feed pressure	
Drilling	Parameters	Feed pressure	Calibration
Drilling	Parameters	Rotation	
Drilling	Parameters	Rotation	Calibration
Drilling	Parameters	Lubrication	
Drilling	Parameters	Times	
Drilling	Parameters	Drill bit	
Drilling	Parameters	Miscellaneous	
Drilling	DCT		
Drilling	DCT	Parameters	
Drilling	DCT	Actuations	
Rig			
Rig	Sensors		
Rig	Sensors	Power Pack	
Rig	Sensors	Power Pack	Calibration
Rig	Sensors	Wagon Frame	

Rig	Sensors	Wagon Frame	Calibration
Rig	Actuations		
Rig	Actuations	Power Pack	
Rig	Actuations	Wagon Frame	
Rig	Actuations	Cooling fan	
Rig	Parameters		
Rig	Parameters	Tramming	
RHS			
RHS	Sensors		
RHS	Sensors	Calibration	
RHS	Actuations	Left Digital Lever	
RHS	Actuations	Right Digital Lever	
RHS	Actuations	Bit Breaker	
RHS	Parameters	RHS	
RHS	Parameters	Threading	
RHS	Parameters	Length Sensor	
RHS	Cradle positions		
RHS	Auto RHS parameters		
RHS	Auto RHS parameters	Feed Speed	
RHS	Auto RHS parameters	Rotation	
RHS	Auto RHS parameters	Times	

Table 10: Menu structure

5.3 Settings

5.3.1 General and specific settings

The speed of the hydraulic cylinders is set separately for each cylinder. These menus have a choice list from which you can choose the desired cylinder (boom extension, feed extension, etc.).

Pressure and flow settings for drilling are divided into a number of menus. Several of these settings can be done specifically for different types of drill bit. The parameters that can have different values for different types of drill bit are marked with a drill bit symbol. These menus have a choice list from which the drill bit can be selected.

Symbol	Explanation
4 8	Drill bit. This symbol is next to various parameters and indicates that they are drill bit specific. The symbol can also be found together with a list of options from which the desired type of drill bit can be selected.

Table 11: Symbols

Left Track Forward			Right Track Forward	
Lowest valve current	0	mA	Lowest valve current	0
Highest valve current	0	mΛ	Highest valve current	0
Left Track Reverse			Right Track Reverse	
Lowest valve current	0	mA	Lowest valve current	0
Highest valve current	0	mA	Highest valve current	0
Time Acceleration Ramp	0.0	s		

5.3.2 Parameters

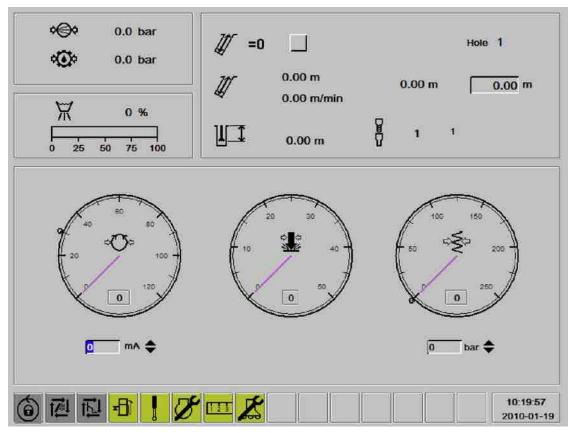
Example of Parameters

The parameter menus are used for settings of different values.

- Highlight the desired function using the cursor keys and press ENTER.
- Specify the desired parameter value with the arrow keys. The value may be in milliamps (mA) or in some cases 1 (on) or 0 (off).
- Press Enter to confirm the selected value.

Actuate desired value	ue				
Function Actuated v	alue	Desired value	Module	Contact	Marking
ECM Enabled	0	0	D512	X24b	K200
Start Engine On	0	o	D512	X24a	К5
Enable Diesel Filler Pump	0	O	D512	X14b	K18
Load Compressor	O	O	D512	X10a	Y210a
Loading Valve, High Pressure	0	o	D512	Х10Ь	Y210b
Hydraulic Oil Heat	0	[O	D101	X17a	Y120a
Reverse Warning	0	o	D512	хэр	H185
Signal Horn	0	[O	D511	X15a	H186
Warning Lamp - Auto	0	O	D103	X11a	H114
Pilot Pressure Tramming	0	o	D511	X10a	Y169
Beacon	0	0	D512	X15b	H226

5.3.3 Actuations


Example of Actuations

The actuation menus are used for forced operation of a certain function or to test a function, e.g. for fault finding on components. This function can also be used if you want to check that a certain function is actuated from the I/O module outputs.

- Highlight the desired function using the cursor keys and press ENTER.
- Specify the desired actuation value. The value may be in milliamps (mA) or in some cases 1 (on) or 0 (off).
- Select the Actuate desired value box. Press Enter and hold it depressed. The desired value is actuated as long as Enter is kept depressed.

NOTE: The actuation menus should only be used by personnel from Atlas Copco or other trained personnel.

5.4 Direct selection menus

5.4.1 Direct selection menu F1.

Direct selection menu F1.

Symbol description for direct selection menu F1

NOTE: GPS is covered separately in the chapter entitled Options

The following is an explanation of the symbols shown in direct selection menu F1.

Symbol	Name	Explanation
*	Tank pressure	Shows the current tank pressure (bar).
	Lubrication oil pressure	Shows the current lubricating oil pressure (bar).
0 % 0 % 0 %	Water amount	Shows the percentage loading of the watermist pump.

Symbol	Name	Explanation
₩ =0	Resetting hole length	Zeroes the measured hole length. Length measurement should be reset with the drill bit against the ground before begin- ning to drill a new hole.
0.00 m 0.00 mmm	Current hole length Penetration rate	The value at the top shows the current hole length (m) and the bottom value the penetration rate (m/min). During auto drilling, the average penetration rate for the latest rod is shown. If the automatic drill stop for at- tained hole length has been reached, the average penetra- tion rate for the entire hole will be shown.
Ш_1 0.00 m	Drill bit position	Shows the position of the drill bit in metres.
	Shortcut, drill plan	Here you can get direct access to the drill plan, if applicable.
0.0 m	Desired hole depth	This is where the value for the desired hole length (0-99.9m) is entered. Drilling will be stopped automatically once this hole depth has been reached.
1	Rod indication	Shows the number of drill steel in the hole.
Hole -:-	Hole number	Current hole number in the drill plan if used.
\$\$\$	Feed pressure	Shows the current feed pressure while forward and reverse feed is being used (bar).

Table 12: Explanation of the symbols in direct selection menu F1.

Pressure gauges: The pressure gauges show, from left: rotation pressure, percussion pressure and drill feed pressure.

Under the pressure gauge for rotation pressure is a box where you can set the amperage that controls the flow to the rotation unit.

Under the pressure gauge for drill feed pressure is a box where you can directly set the drill feed pressure.

Status bar: Shows directly warnings and information on the engine and drilling system. A green box indicates that an automatic function is active. A red box immediately turns off the diesel engine while a yellow one provides information that there is something that must be seen to (see status bar icon).

14:53:00	gs 1
Image: Second structure Image: Second structure Image: Second structure Image: Second structure	Ignore Chair Switch Image: Chair Switch Emergency mode, Length Sensor Image: Chair Switch Emergency mode, RHS Image: Chair Switch Emergency mode, Break Table Image: Chair Switch Emergency mode, Water Mist Image: Chair Switch Beacon On In Mode Ignition On
Hole Length/ Depth Hole Length	Units of Measurement
+ *	Water Mist Draining
Activate HECL-Pump Manually 0	<u>60</u> min
	14:53:00 2009-11-16

5.4.2 Direct selection menu F2.

Direct selection menu F2. Settings 1

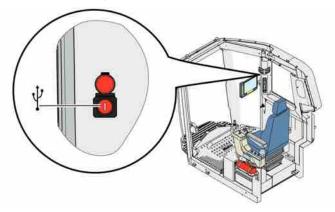
Quick Settings

In F2 a choice can be made between **Settings 1** (see illustration above) and **Settings 2** (see next illustration).

- Automatic close of drill support: The drill supports are closed automatically after a certain drilling length following collaring.
- Final air blow before removal: Extra blow-cleaning of the borehole when drill depth is achieved.
- Half rod flushing: Extra blow-cleaning of the borehole when half of the rod is drilled. The number indicates for how many rods blow-cleaning should apply. For example, number 3 indicates that the blow-cleaning will be for the first three rods.
- **Extra flushing:** Extra blow-cleaning of the borehole when half of the rod is drilled. The number indicates for how many rods blow-cleaning should apply. For example, number 3 indicates that the blow-cleaning will be for the first three rods.
- Cleaning: When the rod is fully drilled the whole rod is fed up and then down during blowing before auto drilling takes place. The number indicates for how many rods the cleaning should apply. For example, number 3 indicates that the blow-cleaning will be for the first three rods.
- Automatic rod extraction:.
 - Off: Normal extraction
 - **Rotation:** Rotation and blowing during extraction
 - Rotation and air: Rotation during extraction
 - Hole Length/Hole depth: Selection of method of measurement.
- Activate HECL-Pump manually: Pump up oil to the rotation unit for a certain time without flushing air being on. Used for example when you have a new down-the-hole drill.

- Ignore chair switch: Normally you have to sit in the seat to operate the positioning levers. If the box is checked, you can leave the seat for 10 seconds and still carry out positioning.
- Emergency mode, Length Sensor: Used if the length sensor has stopped working. None of the pre-programmed stops will work but the rig can be used until the length sensor has been rectified. Use rapid feed with great care as none of the stops are working.
- Emergency mode RHS: Used if an RHS sensor has stopped working. No stops are working but the rig can still be used with great care.
- Emergency mode, Break Table: Normally, the breaking is semi-automatic. Activation allows full manual breaking.
- Emergency mode, Water Mist: Normally the watermist system is switched off when the water level in the tank is low (warning in the status bar). If, for example, the level sensor is inoperative then the watermist system can still be used.
- **Beacon on:** Indicates when the warning beacon should be switched on.
- Units of Measurement: Select Metric/Imperial units.

00000


Increase (+) or decrease (-) the brightness of the display.

- Activate HECL-Pump manually: Pump up oil to the rotation unit for a certain time without flushing air being on. Used for example when you have a new down-the-hole drill.
- Ignore chair switch: Normally you have to sit in the seat to operate the positioning levers. If the box is checked, you can leave the seat for 10 seconds and still carry out positioning.
- Emergency mode, Length Sensor: Used if the length sensor has stopped working. None of the pre-programmed stops will work but the rig can be used until the length sensor has been rectified. Use rapid feed with great care as none of the stops are working.
- Emergency mode RHS: Used if an RHS sensor has stopped working. No stops are working but the rig can still be used with great care.
- Emergency mode, Break Table: Normally, the breaking is semi-automatic. Activation allows full manual breaking.
- Emergency mode, Water Mist: Normally the watermist system is switched off when the water level in the tank is low (warning in the status bar). If, for example, the level sensor is inoperative then the watermist system can still be used.
- **Beacon on:** Indicates when the warning beacon should be switched on.
- Units of Measurement: Select Metric/Imperial units.
- Water Mist Draining: When Enter is pressed the watermist system is blown clean for 20 seconds. The compressor must be switched on and flushing air must be switched off. After blow-cleaning the watermist system must be switched off and flushing air must be switched on in order to blow away the water from the flushing air hose.

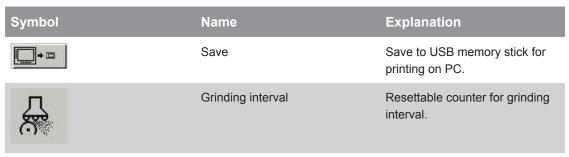
Magazine Direction Automatic Rod Add		<u>.</u>	
Automatic Switching, Jaw / Drill Support Fry Rod Add Without Adapter-Rod-Break	CCW Yes Yes		
MWD Logging	Γ	Disable Fan Control	Γ

Direct selection menu F2 Settings 2

- **Laser Plane:** Selection of laser plane function.
- Dist. Laser Sens. to Drill Bit
- Dist. to Ref. Laser Plan:Used when there are several laser planes present. The reference plane is always the uppermost laser plane.
- Magazine Direction Automatic Rod Add
 - **CW:** The carousel rotates clockwise
 - **CCW:** The carousel rotates anticlockwise
- Automatic Switching: Jaw / Drill Support: Automatic function switching for Lever 36 on the left-hand operator's panel. In manual mode Button 3 must be used.
- Try Rod Add Without Adapter-Rod-Break: Simplified unthreading without breaking. If unthreading does not succeed then full breaking takes place automatically. Only applies during automatic drilling.
- MWD logging (Option): Activates the MWD function. MWD presents a range of values from drilling in the ROC Manager. Requires a USB memory stick in the socket on the right post at the display.

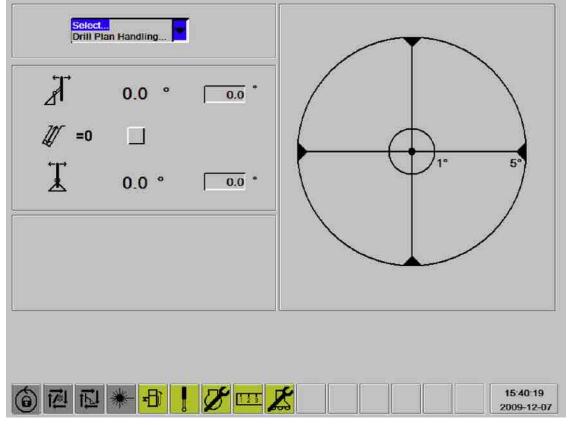
USB Socket

Use Drillplan: Used if import of drill plan from ROC Manager is executed.


-Bì	01	=0	Σ= <i>]</i> [Σ= <i>]</i> []	r	1 m	=0
Ö	1000 h	=0	Σ=Д	r	0 m	=0
厶	0 h	=0	Д.		0 m	=0
	0 h	=0				
			_1 (:			
±₿î	01					
0	0 h					
凸	0 h					View performance log
-	0 h					
Σ=∭	0 m					
6 P	1 🗰 📴					14:54:46 2009-11-16

5.4.3 Direct selection menu F3.

Direct selection menu F3.


Symbol description for direct selection menu F3

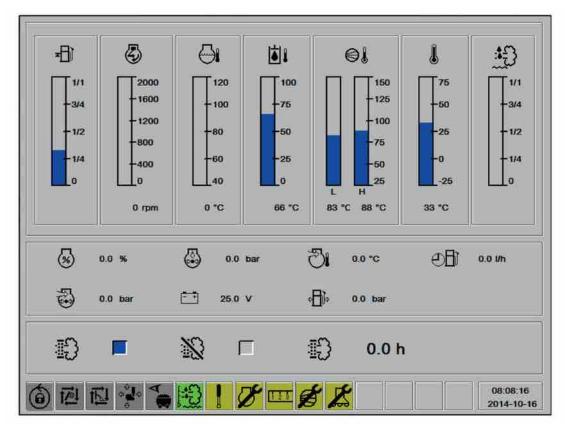
Symbol	Name	Explanation
-	Diesel consumption	Resettable counter for showing diesel consumption since last reset.
\Box	Diesel engine hours	Counter for diesel engine hours. Resettable upper, total number of hours below.
<u>Д</u>	Percussion hours	Counter for percussion hours. Resettable upper, total number of hours below.
	Tramming hours	Counter for tramming hours. Re- settable upper, total number of hours below.
Σ=Д/	Drill meter	Counter for number of drill metres. Two resettable upper, total number of metres below.

View performance log:

Direct selection menu F4.

- Angle position: Upper value on left shows current tilt of feeder. Next to this value is an adjustable field where the desired tilt angle can be set.
- Resetting drill meter: Resetting number of drill metres.
- **Angle position:** The bottom value shows the current swing position of the feeder. Next to this value is an adjustable field where the desired tilt angle can be set.

In order to change the setting, this field must be highlighted and the field activated by pressing the enter button on the display screen or the right drill panel. The value can then be changed using the arrow keys on the display screen or on the right drill panel. Once the desired value has been set, it must be confirmed by pressing the enter button.


The graphic on the right: Used as a working tool or aid to quickly find the correct angle setting.

To get the lever to the desired value, the positioning lever must be moved in the opposite direction to the way the needle is pointing. This will make the end of the needle shown on the display screen move towards the centre of the graphic image.

The end of the needle reaching the centre of the graphic image means the feeder position is at the desired value.

This setting can also be made using "Automatic feeder positioning" (Extra equipment).

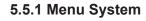
Drill Plan Handling: Create and change drill plan.

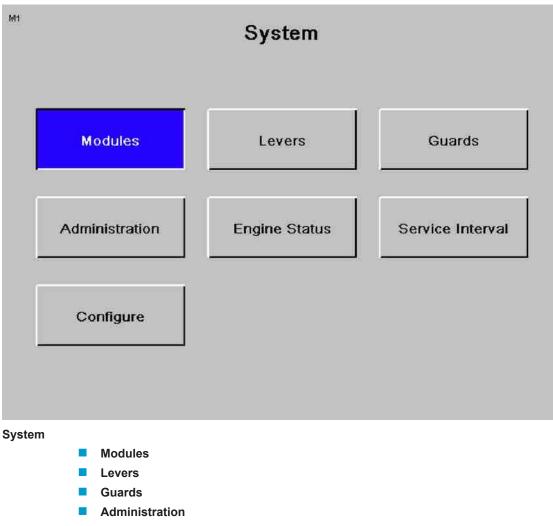
5.4.5 Direct selection menu F5

Direct selection menu F5

Direct selection menu F5 activated by pressing the button Fn, and then button F1 on the display. (The Fn button is active for 3 seconds after each press)

This menu shows the values for the diesel engine.

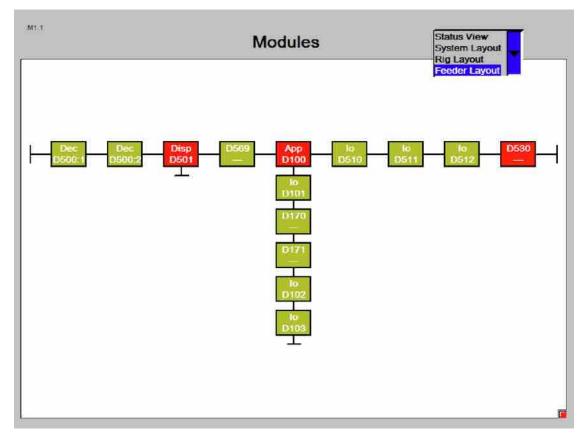

Symbol description for direct selection menu F5


Symbol	Name	Explanation
	Fuel gauge	Shows the level of diesel fuel in the tank. There is a safety level of 80 litres to prevent the tank from running dry. A warning will be shown on the display when the fuel level becomes too low.
$\langle \!$	Diesel engine rpm	Reads and displays the current engine speed

Symbol	Name	Explanation
$\bigcirc \mathbf{I}$	Coolant temperature	Displays temperature of coolant
	Hydraulic Oil Temp	Displays the temperature of the hydraulic oil
	Compressor temperature	Reads and displays the current compressor temperature. If the compressor attains a high air temperature (120 °C), the diesel engine will be switched off auto- matically and an information box will be shown on the display.
	External temperature	Displays the external temperat- ure
	DEF gauge	Shows the level of DEF (Diesel Exhaust Fluid) in the tank
%	Engine load	Displays the instantaneous load the diesel engine is exerted to in percent
	Oil pressure	Displays the engine oil pressure when running. Low oil pressure will automatically turn off the diesel engine and an information box will be shown on the display
1G	Charge air temperature	Displays the instantaneous charge air temperature when running
ÐBI	Fuel rate	Displays the instantaneous fuel consumption when running
3	Boost pressure	Displays the instantaneous boost pressure when running
- +	Battery status	Displays the charge status of the battery. If there is no charge, an information box will be dis- played in the status bar.

Symbol	Name	Explanation
	Fuel pressure	Displays the operating fuel pres- sure to the injectors
.	Forced regeneration	Start forced regeneration
	Block regeneration	Block automatic regeneration
∎ ∰ 0.0 h	Max. time left before regenera- tion	Shows maximum time remaining until automatic regeneration of the diesel engine's particulate filter

5.5 System



- Engine Status
- Service Interval
- Configure

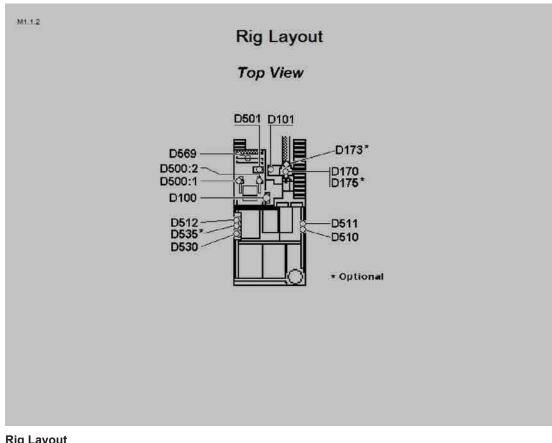
5.5.2 System - Modules

Four different views can be selected:

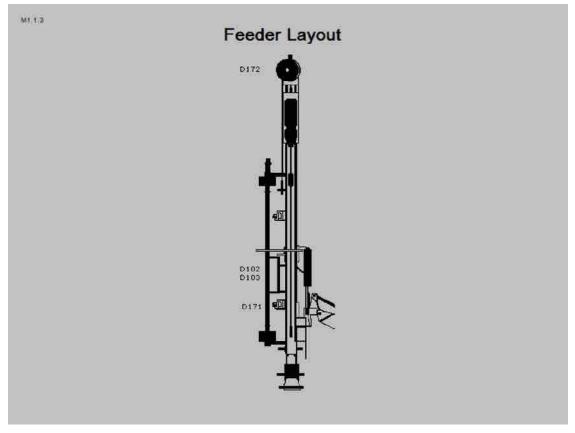
- 1. Status View
- 2. System Layout
- 3. Rig Layout
- 4. Feeder Layout


Status View

The status of all the modules can be checked in this menu:

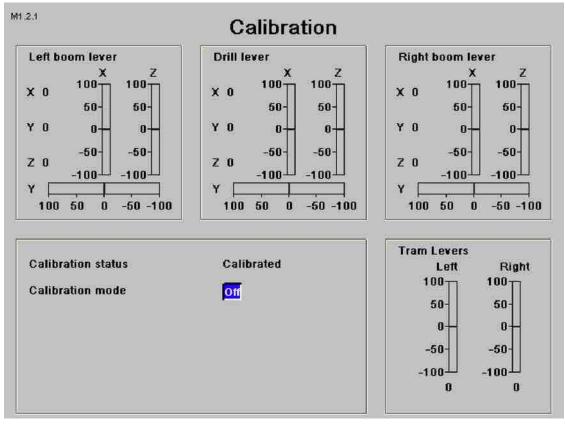

- D500:1 Left lever module
- D500:2 Right lever module
- D501 Operator's display
- D569 Aim
- D100 Application module
- D510 I/O module
- D511 I/O module
- D512 I/O module
- D530 CAN bridge
- D101 I/O module
- D170 Boom articulation sensor
- D171 Feed Inclinometer Sensor

- D102 I/O module
 - D103 I/O module


Select the module using the arrow keys and open it with Enter to see the message that the system has written for the module. (These figures are not shown.)

System Layout

Feeder Layout


Calibra	uon	_	Lev	ers		
		Value	Mid Pos	Status		
Boom Lever	x Y	0	1	Ok		
Left	Y	0	9	Ok		
	Z	0		Ok		
Drill Lever	x	Ö	1	Ok		
	Ŷ	0	1	Ok		
	z	0		Ok		
Boom Lever	x	0	1	OK		
Right	<u>х</u> <u>ү</u>	0	1	Ok		
	Z	0		OK		
Tram Lever	x	-100	U	Ok		
	Ŷ	100	Û	Ok		
RHS Lever	x	Cent	ter	RHS Lever	x	Center
Left	× Y	Cent	ter	Right	× Y	Center
	Z	Off			Z	011

5.5.3 System - Levers

Levers.

The lever function can be checked in this menu by moving the lever in its X axis (rotation left/right) and Y axis (feed forward/back). If the lever is working, you should see its actuation value, 0 - 127 units. If a lever is replaced or if the lever gives an actuation value lower than 115 or higher than 127 units, all the levers must be recalibrated (see **Calibration** levers below). The function of the rocker switch can also be tested by pressing in the left/right-hand side of the lever head and the button **Left/Right** should then be indicated on the display screen.

- Boom Lever Left
- Drill Lever
- Boom Lever Right
- Tram lever
- RHS Lever Left
- RHS Lever Right

System - levers - calibration

Calibration

- Calibration status: Indicates whether the levers have been calibrated
- Calibration mode: With calibration mode activated, none of the functions will be actuated, and it will only be the lever movements that will be shown as a reading on the display.
- Calibrated: Calibration is performed by moving the levers to their end positions on all axes, also the lever's side button.

		Module	Contact	Marking
2		(2000)		
Emergency stop tripped	0	D512	X5a	S132
Hydraulic Oil Level, Low	0	D512	X6a	B143
Hydraulic Oil Temp, High	0	D512	X20a	B362
Engine Coolant Level, Low	0	D512	X23a	B361
Compressor Temp. High Stage, High	0	D512	X2a	B366a
Compressor Temp. Low Stage, High	0	D512	X3a	B366b
Chair Switch, On	1	D512	X12a	B379
Hydraulic Jack Up	1	D512	X17a	B184
Engine Air Filler Press High	0	D511	X17a	B360
Compressor Air Filler Press High	0	D512	X18b	B365

5.5.4 System - Monitors

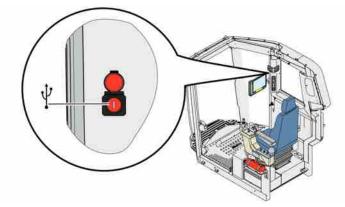
Guards.

The status of the various guards (On/Off) can be read from the **Guards** menu. The module, marking and connector each sensor has on the module is also specified here. This means it is easier to locate the source of the fault so that it can be rectified more quickly.

The monitors in the top box turn off the diesel engine.

- Emergency stop tripped
- Hydraulic Oil Level, Low
- Hydraulic Oil Temp, High
- Engine Coolant Level, Low
- Compressor Temp. High Stage, High
- Compressor Temp. Low Stage, High
- Chair Switch, On
- Hydraulic Jack Up
- Engine air filter press. high
- Compressor Air Filter Press High

	Admi	nistration
Save parameters		1 2009-11-17
Load parameters		15:47:35
	Con	figuration
Rig type	ROC D65s	
Rig number	8992 0063 55	
System version	4.7.022_D65s	


5.5.5 System - administration

Administration

In this menu, you can save drill parameters for later retrieval in case of fault finding or upgrading of existing software to a later version. The information is saved on a USB memory stick.

1	NOTE: Only use USB memory sticks from Atlas Copco.
	Save parameters: Parameters are saved on a USB memory stick. Load parameters: Parameters are retrieved from a USB memory stick.
1	NOTE: For all reprogramming, first make sure that all the parameters are saved on a USB memory stick so they can be downloaded into the new version of the software later.

Saving and loading parameters

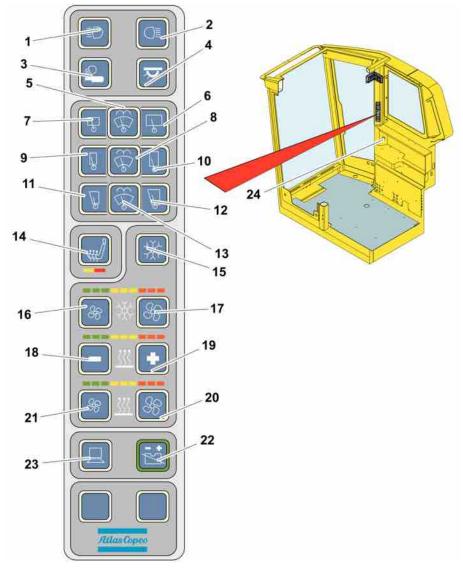
USB Socket

Save parameters is used when all settings have been made and you want to save a backup copy on a USB memory stick.

Load parameters is used when you want to read parameters into the RCS system from a USB memory stick.

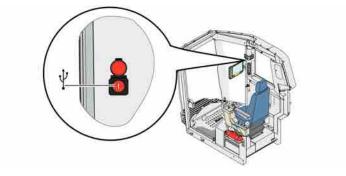
- 1. Insert the USB memory stick into the USB socket.
- 2. Use the arrow keys to move to **Save parameters** or to **Load parameters** and press Enter.

NOTE: A text box will appear on the screen and when the operation is complete "OK" will be displayed.

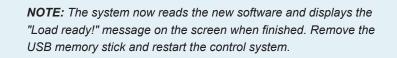

3. Remove the USB memory stick.

5.5.6 Loading new software

NOTE: All settings are deleted when new software is loaded. Before loading new software, the parameter settings must therefore be saved onto a USB memory stick.


In certain cases a new "boot program" must be loaded in conjunction with new software. The boot program is loaded as described below. The boot program must always be loaded first.

1. Turn off the RCS system with button (23) RCS.


Control panel for operator's cabin.

2. Insert the USB memory stick with the new software into the USB socket.

USB Socket

3. Start the RCS system.

- 4. Remove the USB memory stick and switch off the RCS system again.
- 5. Restart the RCS system.
- If you want to use the same settings as previously and they are saved on a USB memory stick, they can now be loaded into the system. See the section Saving and loading parameters.

NOTE: Only use USB memory sticks from Atlas Copco.

Date and time

The date and time may have to be set on a new rig or if new software has been loaded.

Many settings are made by changing an existing numerical value, e.g. setting the date and time in the **Administration** menu.

<u>1°2</u> 	2001-04-18
\bigotimes	19:23:23

Date and time in the Administration menu

- Move the cursor to the current numerical value using the arrow keys. The entire value will be highlighted.
- Press the enter button. One individual number will now be highlighted in another colour.
- 3. Increase the value with the up-arrow key and lower the value with the down-arrow key.
- 4. Complete by pressing Enter.

In certain cases the numerical value may have several digits. In such cases, change one digit at a time. Use the left and right arrow keys to move the cursor to the desired digit (ones, tens, etc.).

Diagnostic Code	Marking	Sensors	Status
	100	Engine Coolant Temp Sensor	Ok
	103	Intake Manifold Temp Sensor	Ok
	101A	Engine Oil Temp Sensor, Mid	Ok
	1018	Engine Oil Temp Sensor, End	Ok
	200	Turbo Outlet Pressure Sensor	Ok
	201	Engine OII Pressure Sensor	Ok
	203	Almospheric Pressure Sensor	Ok
	204	Injection Pressure Sensor	Ok
	401	Primary Engine Speed Sensor	Ok
	402	Secondary Engine Speed Sensor	Ok
	B362	Hydraulic Oil Temp Sensor	Ok
	B366A	Compressor Oil Temp Sensor High Stage	Ok
	B366B	Compressor Oil Temp Sensor Low Stage	Ok

5.5.7 System - Engine status

Engine Status

The status of all the sensors associated with the engine can be checked in the **Engine Status** menu.

In conjunction with each fault, a diagnostic code will appear on the scroll list on the left. This code can be translated to clear text in the diesel engine manufacturer's manual.

- 100 Engine Coolant Temp Sensor
- 103 Intake Manifold Temp Sensor
- 101A Engine Oil Temp Sensor, Mid
- 101B Engine Oil Temp Sensor, End
- 200 Turbo Outlet Pressure Sensor
- 201 Engine Oil Pressure Sensor
- 203 Atmospheric Pressure Sensor
- 204 Injection Pressure Sensor
- 401 Primary Engine Speed Sensor
- 402 Secondary Engine Speed Sensor
- B362 Hydraulic Oil Temp Sensor
- B366A Compressor Oil Temp Sensor High Stage
- B366B Compressor Oil Temp Sensor Low Stage

	Time To Service	Service Interval	Service Don
Ø	0 h	0 h	
Ľ	0 h	0 h	
	Distance to grinding	Grinding interval	Grinding Dor
æ	0 m	0 m	

5.5.8 System - Service Interval

Service Interval

- Time To Service
- Service Interval
- Service Done
- Distance to grinding
- Grinding interval
- Grinding Done

Configur	e
Engine Type	CAT C15
Boom Type	C20 L MK II
Feeder Type	BMH 8000
Rod Handling Type	RHS-140
Length Sensor Type	Incr. Puls Sensor
Sensor type. Compr. lemp	Linear
Sensor type: Ambient temp	Linear
Aim Devie Type	Can Open
HNS GPS receiver	Trimble SPSx50
	Rig Options

5.5.9 System - Configuration

Configure

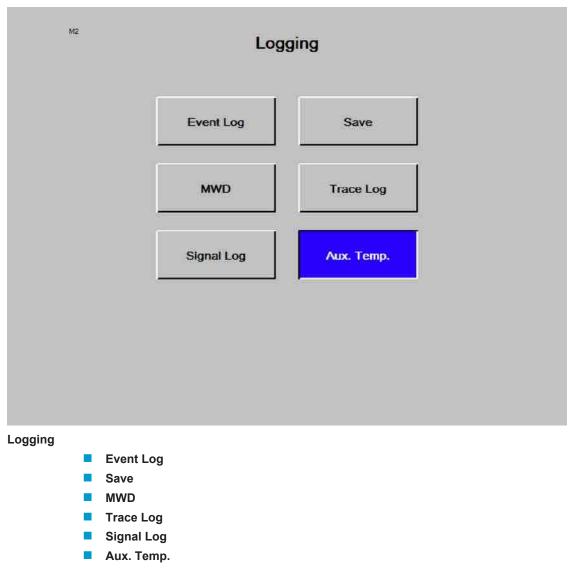
In the Configuration menu you can see how the rig is equipped.

Configuration file: An approved configuration file means that the rig's software is consistent with the equipment on the rig.

- Engine type
- Boom type
- Feeder type
- Rod Handling Type
- Length Sensor Type
- Sensor type: Compr. temp
- Sensor type: Ambient temp
- Aim Device Type
- HMS GPS receiver

Laser Plane	Yes		
Angle Indication	Yes	-	
Hole Navigation	Yes		
Electr. Compass	No		
Automatic Positioning	Yes		
Automatic Rod Handling	Yes		
Maintenance Logging	No		
MWD Logging	Yes		
Water Mist	Yes		
Thread Greasing Spray	Yes		
Cold Start	No		
Beacon	Yes	Ā	

5.5.10 System - Rig Options


Rig Options

This menu shows which Rig Options are active on the rig

Certain rig options can be activated or deactivated by checking the box to the right and pressing Enter.

- Laser plane
- Angle Indication
- Hole navigation
- Electr. Compass
- Automatic positioning
- Automatic rod handling
- Maintenance Logging
- MWD logging
- Water mist on
- Thread Greasing Spray
- Cold Start
- Beacon

5.6 Logging

5.6.1 Logging Menu

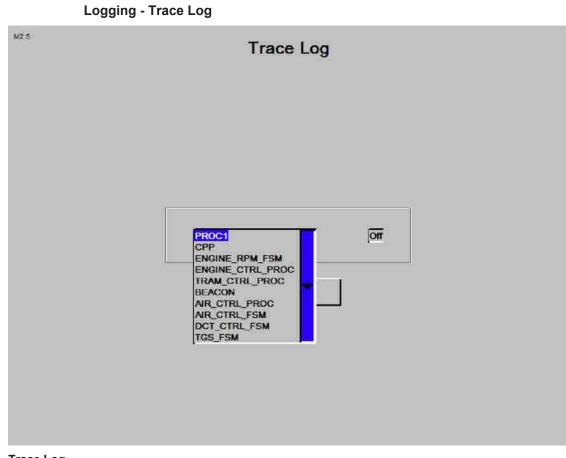
2008-11-17 11:13:38	WRN	System	SC=ON	No contact with module(s)	
2008-11-17 11.13.37	WRN	System	SC=OFF	No contact with modulers)	
2009-11-17 11:30:28	WRN	System	SC=ON	No contact with module(s)	
2009-11-17 11:30:30	INF	Boom 1	EV	ASSERT, APP	
2009-11-17 11:30:30	INE	Boom 1	EV.	ASSERT, APP	1
2009-11-17 11:30:30	INF	Boom 1	EV	ASSERT, APP	
2009-11-17 11:30:30	INE	Boom 1	EV	ASSERT. APP	
2009-11-17 11:30:30	INF	Boom 1	EV	ASSERT, APP	(
2008-11-17 11:30:30	INE	Boom 1	EV	ASSERT, APP	+
2009-11-17 11:68:43	INE	System	EV	**** RCS starled ****	<u> </u>
2009-11-17 11:58:45	INE	Boom 1	EV	ASSERT, APP	
2009-11-17 11:56:50	WRN	System	SC=ON	No contact with module(s)	1
2009-11-17 11:55:52	WRN	System	SC=OFF	No contact with module(s)	\$
2009 11-17 11:57:13	154F	System	EV	**** RCS startes ****	
2009-11-17 11:57-14	INF	Seem 1	EV	ASSERT, APP	
2009-11-17 11:57:19	WRN	System	SC=ON	No contact with module(s)	
2009-11-17 11:57:21	WRN	System	SC=OFF	No contact with module(s)	
2005-11-17 15:33:44	INF	System	EV	**** RCS slarled ****	
2009-11-17 16:33:46	ENE	Boom 1	EV	ASSERT, APP	
2009-11-17 15:33:50	WRN	System	SC=ON	No confact with modulets)	
2009-11-17 15:33:53	WRN	System	SC=OFF	No contact with module(s)	
2009-11-17 15:35:18	INE	System	EV	**** RCS started ****	
2008-11-17 15:35 19	INE	Boom 1	εV	ASSERT, AFP	
2009-11-17 15:35:25	WRN	System	SC=ON	No contact with module(s)	
2005-11-17 15:35:27	WRN	System	SC=OFF	No contact with module(s)	
2009-11-17 15:43:19	154F	System	EV	**** RCS started ****	
2009-11-17 15:43:20	INF	Boom 1	EV	ASSERT, AFP	
2009-11-17 15-43-25	WRN	System	SC=ON	No contact with module(s)	
2009-11-17 15:43:28	WRN	System	SC=OFF	No contact with module(s)	

Logging - Event Log

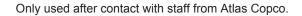
L'une T/

Event Log

Save Event Log by inserting a USB memory stick into the USB socket on the right-hand pillar behind the display and select the button at the bottom of the display using the arrow keys, press Enter.


Logging	- Save
---------	--------

M2.2		Save	i	
		+ =		Save Fault Log
	Statistics		File Format:	Text
	Blast Log			
	Performance log			
	Assert log		Chosen module	APP
Savo				


- Save
- Statistics: Save statistics from the rig. Can be saved as text or spreadsheet depending on what it is going to be used for.
- Blast log: Used when the log from the round is to be exported to ROC Manager.
- Performance log: Used when saving the last thirty holes.
- Assert log

- MWD Logging: Off or On.
- **Sample distance:** The interval with which MWD is saved.

Trace Log

85

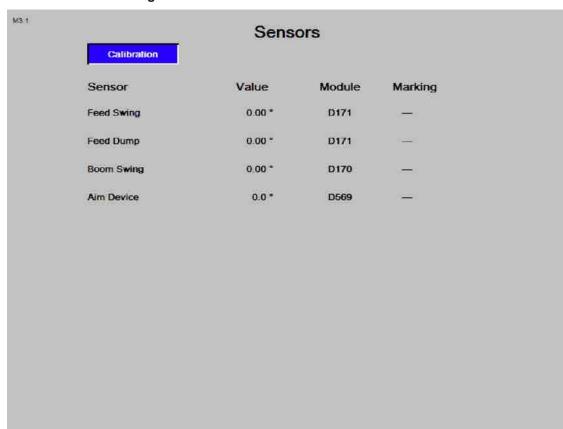
Logging - Signal Log

M2.8	Signal Log					
		Quantity	Max.			
	AnalogSignalChangeLogger	0	20			
	DigitalSignalChangeLogger	0	10			
	PeriodicSampleLogger	0	10			
	Total	o				
	Maximum Capacity	30				
	Registered Log Objects:					

Signal Log

	Logging - Auxiliary Temp	erature Logging		
M2.4	Auxiliary 1	lemperature Loggi	ng	
	Auxiliary Temp. 1	Threshold	3 -	
	D510 X2a	Resolution	1.0 °C	
	Auxiliary Temp. 2	Threshold	0.0 °C	
	D610 X3a	Resolution	1.0 °C	
	Auxiliary Temp. 3	Threshold	0.0 °C	
	D511 X2a	Resolution	[<u>1.0</u> "C	
Aux. Temp.				
	Threshold			

Resolution


5.7 Positioning

Actuations **Parameters**

M3 Positioning Sensors Actuations Parameters Positioning. Sensors

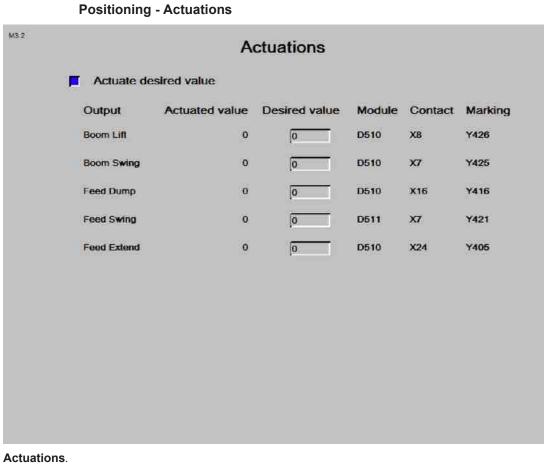
5.7.1 Positioning menu

88

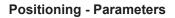
Positioning - sensor

Positioning - sensor.

- Adjustable sensors are:
 - Feed swing
 - Feed dump
 - Boom swing
 - Aim device


M3.1.1			Calibratio	on		
	Sensor	Raw value	Value	Calibrate	Offset (Coefficient
	Feed Swing	O	0.00 *		0.00 *	0.000
	Feed Dump	0	0.00 *		0.00 =	0.000
	Boom Swing	0	0.00 *		0.00 =	0.000
	Aim Device	0	0.0 *		0.0	0.000
	Boom Lift	0	180.00 *		0.00 *	0.000
	Feed Extend	0	0.000 m		0.000 m	0.000
Calibration						
	Sensors					
	• F	eed swing				
		ood dump				

Positioning - Sensor - Calibration


- Feed dump
- Boom swing
- Aim device
- Raw val
- Value
- Calibrate
- Offset
- Coefficient

The sensors for the angle instrument can be reset in the Calibration menu.

- Be sure to adjust the cabin's aim device directly forward 90° towards the cabin windscreen.
- Adjust the boom straight forward so that it is parallel with the cabin's aim device inside the cabin.
- Use a spirit level and adjust the feeder vertically in both feed swing and feed tilt modes.
- Now the sensors can be reset by selecting the relevant sensor and resetting by pressing the Enter key.

- **Boom lift**
- Boom swing
- Feed dump
- Feed swing
- Feed extend

MS.2	
	Valve Parameters
	Auto Parameters

Parameters

Valve Parameters

The parameters used when the positioning cylinders are operated manually.

Auto Parameters

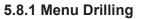
The parameters used when the Semi-automatic boom positioning (optional equipment) is used.

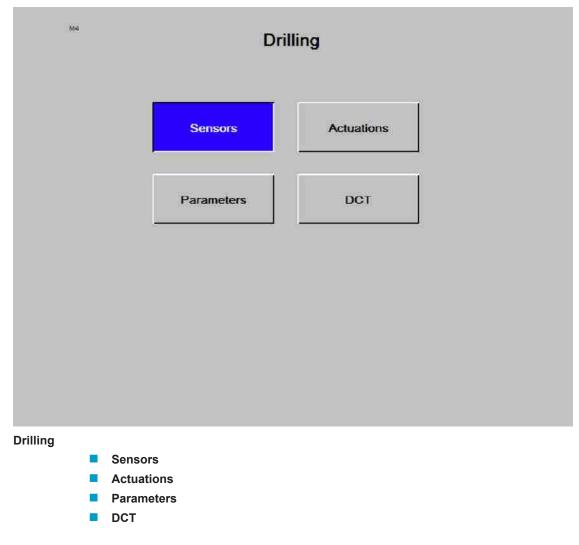
		Boom Lift Boom Swing Feed Dump Feed Swing
Cylinder in		Feed Extend
Lowest valve current	0	mA
Highest valve current	0	mA
Cylinder out		
Lowest valve current	0	mΑ
Highest valve current	0	mA
Time Acceleration Ramp	1.0	

Positioning - Parameters - Valve Parameters

Valve Parameters

- Boom lift
- Boom swing
- Feed dump
- Feed swing
- Feed extend
- Cylinder in
 - Lowest valve current
 - Highest valve current
- Cylinder out
 - Lowest valve current
 - Highest valve current
- Time Acceleration ramp


			Feed Swing
	Cylinder in		
	Lowest valve current	0	mA
	Highest valve current	[0	mA
	Cylinder out		
	Lowest valve current	0	mA
	Highest valve current	[o	mA
Calibration aid		Actuated value	0 mA
Off		Relative velocity	0.00


Positioning - Parameters - Auto Parameters

Auto Parameters

- Feed dump
- Feed swing
- Cylinder in
 - Lowest valve current
 - Highest valve current
- Cylinder out
 - Lowest valve current
 - Highest valve current
- Calibration aid
 - Actuated value
 - Relative velocity

5.8 Drilling

Calibration	Sensors					
Sensor	Value	Module	Contact	Marking		
Rotation pressure	0.0 bar	D101	X22b	B101		
Percussion	0.0 bar	D511	X21b	B188		
Feed pressure	0.0 bar	D101	X4b	B133		
Pump pressure HECL	6.0 bar	D512	X21b	B369		
Oil level HECL	ï	D512	X18a	B380		
Laser Sensor	0	D103	X18a	B316		
Water Level, WM-Tank	1	D512	X17b	B457		

Drilling - Sensor

Sensors

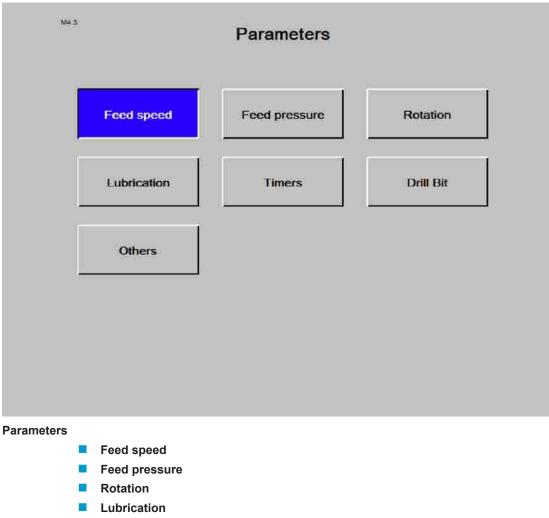
- Rotation pressure
- Percussion
- Feed pressure
- Pump pressure HECL
- Oil level HECL
- Laser Sensor
- Water Level, WM-Tank

Drilling - Sensor Calibration

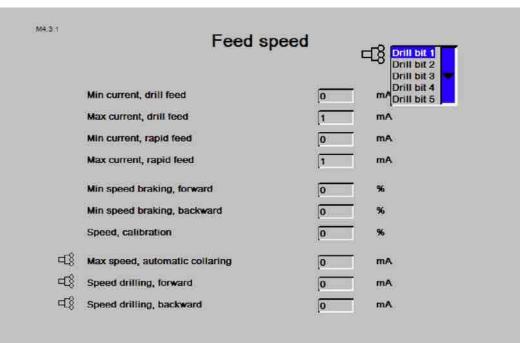
Calibration of the sensors involved in the drilling process can be carried out in the **Calibration** menu.

Sensor	Value	Set to zero	Offset	Coefficient
Rotation pressure	0.0 bar		0	0.000
Percussion	0.0 bar		0	0.000
Feed pressure	0 0 bar		100	0.000
Pump pressure HECL	0.0 bar		200	0.000

- Ensure that the system is depressurised.
- Select the **Set to zero** by the relevant pressure sensor.
- Press Enter to Set to zero the sensor. The pressure sensor is then reset and automatically receives an offset value and a coefficient.


M4.2 Act	uations	Actuate desired value				
Function A	ctuated value	Desired value	Module	Contact	Marking	
Feed speed	0	0	D101	X10	Y104AB	
Rapid feed	0	o	D101	X14	Y104CD	
Feed pressure	O	0	D101	X15a	Y103	
Rotation speed	0	0	D101	X9	Y102	
Rotation pressure threading	0	0	D101	X16a	Y155	
Air flow, reduced	0	0	D510	X18a	Y116	
Air flow, full	0	o	D510	X18b	Y115	
Lubrication	0	0	D512	X14a	Y165	
Thread greasing spray (air v	aive) 0	0	D101	X11a	Y552a	
Thread greasing spray (grea	ise valve) 0	o	D101	X11b	Y552b	
Water mist clean system	0	o	D511	X18a	Y112c	
Water mist flow control	0	0	D512	X16a	Y112d	

Drilling - Actuations

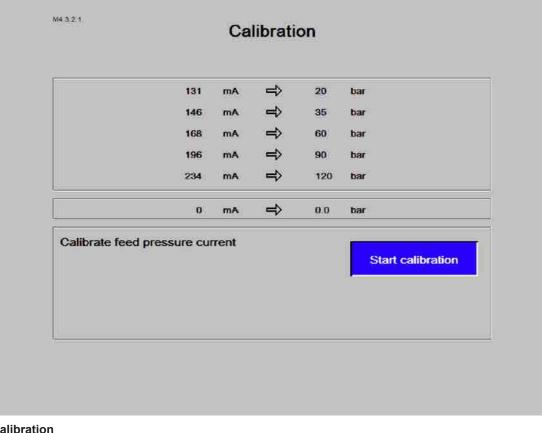

Actuations

- Feed speed
- Rapid feed
- Feed pressure
- Rotation Speed
- Rotation pressure threading
- Air flow, reduced
- Air flow, full
- Lubrication
- Thread greasing spray (air valve)
- Thread greasing spray (grease valve)
- Water mist clean system
- Water mist flow control

- Timers
- Drill bit
- Others

Drilling - Parameters - Feed Speed

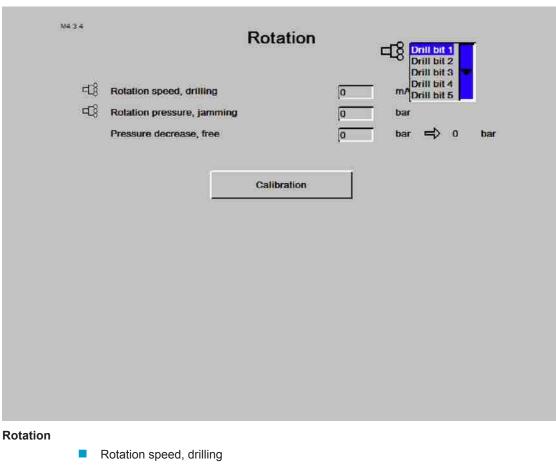
Feed speed


- Min current, drill feed
- Max current, drill feed
- Min current, rapid feed
- Max current, rapid feed
- Min speed braking, forward
- Min speed braking, backward
- Speed, calibration
- Max speed, automatic collaring
- Speed drilling, forward
- Speed drilling, backward

N4.3.2						
4 3	Feed pressure, collaring Feed pressure, drilling		0	Drill bit 3 bat Drill bit 4 bat Drill bit 5		
	Max feed pressure, drilling Min feed pressure, drilling		0	bar bar		
	Pressure increase rock conta	ct	0	bar		
		Calibration				

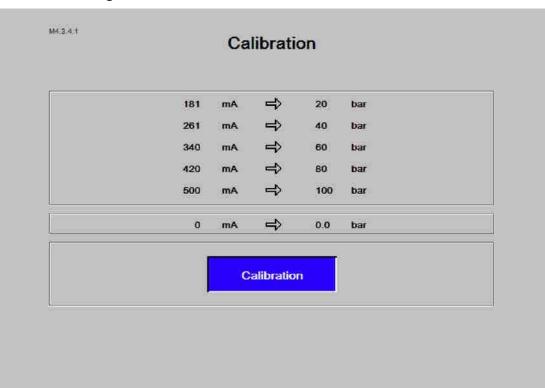
Drilling - Parameters - Feed Pressure

Feed pressure


- Feed pressure, collaring
- Feed pressure, drilling
- Max feed pressure, drilling
- Min feed pressure, drilling
- Pressure increase rock contact

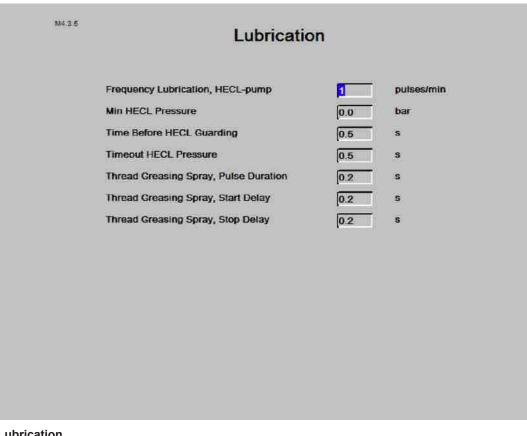
Drilling - Parameters - Feed Pressure - Calibration

Calibration


Calibration of feed pressure: Operate the cradle down to mechanical stop. Select Start calibration. The system will now automatically read the different pressures for the different currents and enter them into the system. A flag will then appear when calibration is finished.

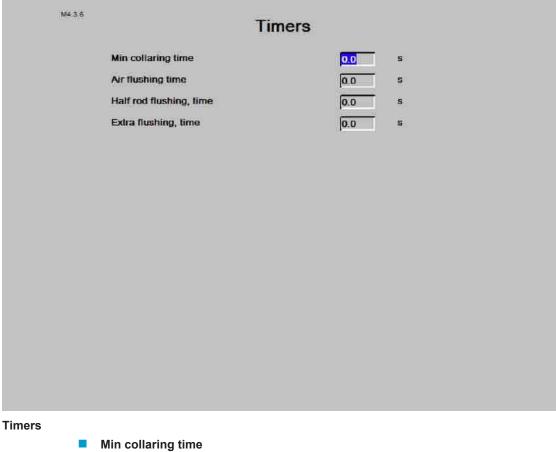
Drilling - Parameters - Rotation

Rotation pressure, jamming


Pressure decrease, free

Drilling - Parameters - Rotation - Calibration

Calibration


Clamp the adapter in the break table and start the calibration.

Drilling - Parameters - Lubrication Oil

Lubrication

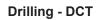
- **Frequency lubrication, HECL-pump**
- Min HECL Pressure
- **Time Before HECL Guarding**
- **Timeout HECL Pressure**
- **Thread Greasing Spray, Pulse Duration**
- Thread Greasing Spray, Start Delay
- Thread Greasing Spray, Stop Delay

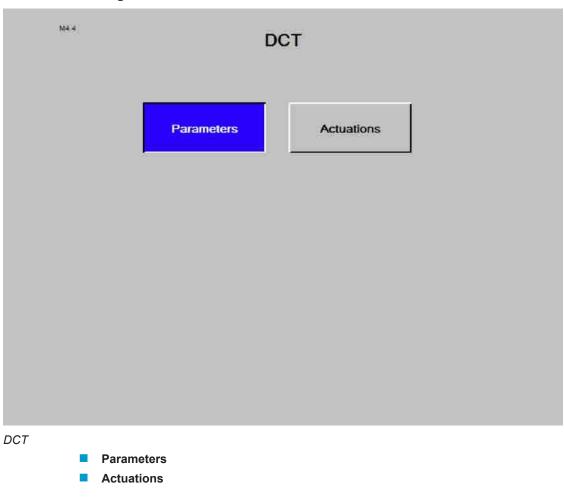
Drilling - Parameters - Times

- Air flushing time
- Half rod flushing, time
- Extra flushing, time

M4.3.10 **Drill Bit** -18 Drill bit 1 🔫 Copy Drill bit 2 0 bar 0 bar Feed pressure, drilling Γ 0 mA 0 mA Max speed, automatic collaring 0 mA 0 mA Speed drilling, forward 0 mA 0 mA Speed drilling, backward 0 mA 0 mA Rotation speed, drilling 0 bar 0 bar Pressure increase, jamming • Þ 4 Copy All

Drilling - Parameters - Drill Bit


Drill bit


- Feed pressure, drilling
- Max speed, automatic collaring
- Speed drilling, forward
- Speed drilling, backward
- Rotation speed, drilling
- Pressure increase, jamming

Drilling - Parameters - Miscellaneous

- Air pressure, drill out
- Initial collar length
- M4 offset

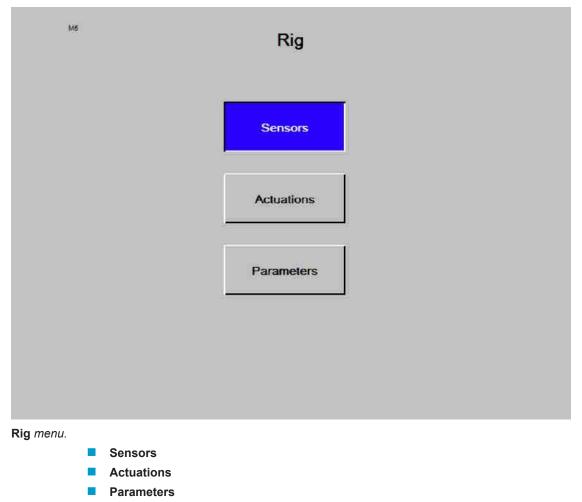
809.4.1	Pa	rameters			
	Time Clean Pulse Pause Time Number of After Clean Pulses		0.1 [1 [0	5 5	

Drilling - DCT - Parameters

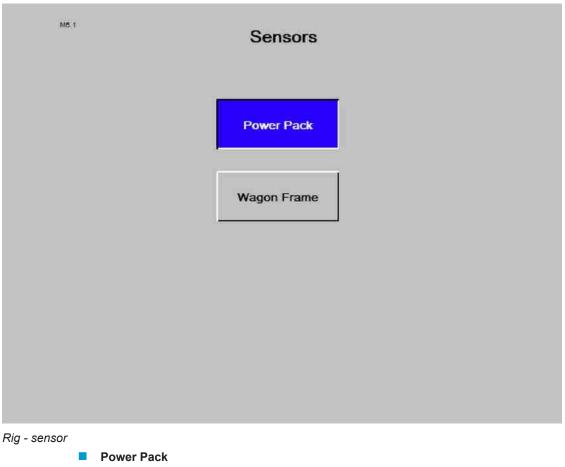
Parameters

- Time clean pulse
- Pause time
- Number of after clean pulses

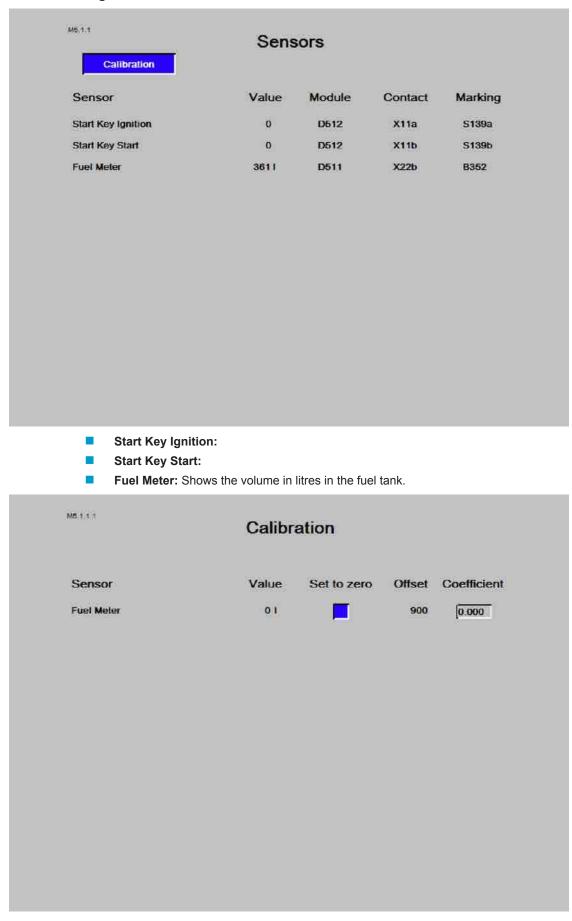
Drilling - DCT - Actuations


Actuate	desired value				
Function	Actuated value	Desired value	Module	Contact	Markin
DCT Fan	0	[O	D510	X15a	Y250
DCT Flap	0	O	D510	X15b	Y253
Filter Clean A	0	(O	D510	X11a	Y251a
Filter Clean B	0	O	D510	X11b	Y251b
Filter Clean C	0	O	D510	X12a	Y251c
Filter Clean D	0	O	D510	X12b	Y251d

A


- DCT Fan
- DCT Flap
- Filter clean A
- Filter clean B
- Filter clean C
- Filter clean D

5.9 Rig



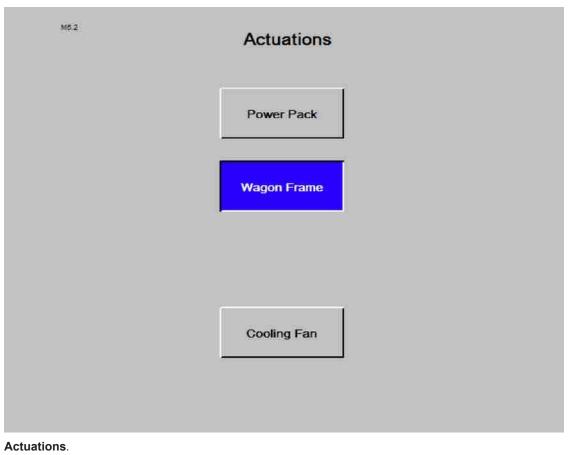
Wagon Frame

Rig - sensor - drive unit

Calibrate by selecting and setting the box to zero.

	Sens	ors		
Calibration				
Sensor	Value	Module	Contact	Marking
Hydraulic Oil Temp	66 *C	D512	X20a	B362
Hyd Filter Press.	0.0 bar	D512	X22b	B139
Compressor Temp. High Stage	107.4 °C	D512	X2a	B366a
Compressor Temp. Low Stage	102.8 °C	D512	X3a	B366b
Compressor Vessel Pressure	0.0 bar	D512	X4b	B456
Auxiliary Pressure	0.0 bar	D101	ХЗb	B999
Outer Temp.	33 °C	D101	X2a	B147
Auxiliary Temp. 1	-63 °C	D510	X2a	AUX1
Auxiliary Temp. 2	-63 °C	D510	X3a	AUX2
Auxiliary Temp 3	-63 °C	D511	X2a	AUX3

Rig - sensor - chassis frame


Rig - sensor - chassis frame.

- Hydraulic Oil Temp: Shows the temperature of the hydraulic oil.
- Hyd Filter pressure: Shows hydraulic filter pressure.
- Compressor Temp. High Stage: Shows the compressor temperature in the highpressure stage.
- Compressor Temp. Low Stage: Shows the compressor temperature in the lowpressure stage.
- **Compressor Vessel Pressure:** Shows the tank pressure.
- Outer Temp.: Shows the outside temperature.

	Calibra	ation		
Sensor	Value	Set to zero	Offset	Coefficient
Hydraulic Oil Temp	65.7 °C		277	0.232
Hyd Filler Press.	0.0 bar		0	0.061
Compressor Temp. High Slage	88.1 °C		393	0.254
Compressor Temp. Low Stage	83.1 °C		393	0.254
Compressor Vessel Pressure	0.0 bar		102	0.061
Auxiliary Pressure	0.0 bar		0	0.061
Outer Temp.	33.2 °C		277	0.232
Auxiliary Temp. 1	-63.0 °C		277	0.232
Auxiliary Temp. 2	-63.0 °C		277	0.232
Auxiliary Temp. 3	-63.0 °C		277	0.232

Calibrate by selecting and setting the boxes to zero.

- Power Pack
- Wagon Frame
- Cooling Fan

Rig - actuations - drive unit

M5,2.1

Actuations

Actuate desired value

Function /	Actuated value	Desired value	Module	Contact	Marking
ECM Enabled	0	0	D512	X24b	K200
Start Engine On	0	o	D512	X24a	к5
Enable Diesel Fil	ler Pump 0	O	D512	X14b	K18
Load Compresso	r O	0	D612	X10a	Y210a
Loading Valve, H	igh Pressure 0	o	D512	X10b	Y210b
Hydraulic Oil Hea	at O	0	D101	X17a	Y120a
Reverse Warning	0	o	D512	хэр	H185
Signal Horn	0	o	D511	X15a	H186
Warning Lamp - /	Auto 0	0	D103	X11a	H114
Pilot Pressure Tra	amming 0	o	D511	X10a	Y169
Beacon	0	0	D512	X15b	H226

- ECM Enabled
- Start Engine On
- Enable diesel filler pump
- Load Compressor
- Loading Valve, High Pressure
- Hydraulic oil heat
- Reverse Warning
- Signal horn
- Warning Lamp Auto
- Pilot Pressure Tramming
- Beacon

Rig - actuations - chassis frame

15.2.2		Actuations			
Actuate desired val	lue				
Function Actuated	value	Desired value	Module	Contact	Marking
Tramming High Speed	0	o	D101	X17b	Y122
Hydraulic Jack In	0	O	D510	X14a	Y410a
Hydraulic Jack Out	0	O	D510	X14b	Y410b
Track Oscillation Lock	0	O	D511	X12a	¥473
Left Track Oscillation Fwd	0	O	D510	X9a	Y419a
Left Track Oscillation Bwd	0	o	D510	X9b	Y419b
Right Track Oscillation Fwd	0	O	D510	X10a	Y420a
Right Track Oscillation Bwd	0	0	D510	X10b	Y420b
Left Track, Fwd/Rev	0	0	D101	X7	Y206
Right Track, Fwd/Rev	0	o	D101	X8	Y207
Pump 1: Tramming / Drilling	0	O	D101	X18a	¥121a
Positioning In Trammode	0	O	D101	X18b	Y121b

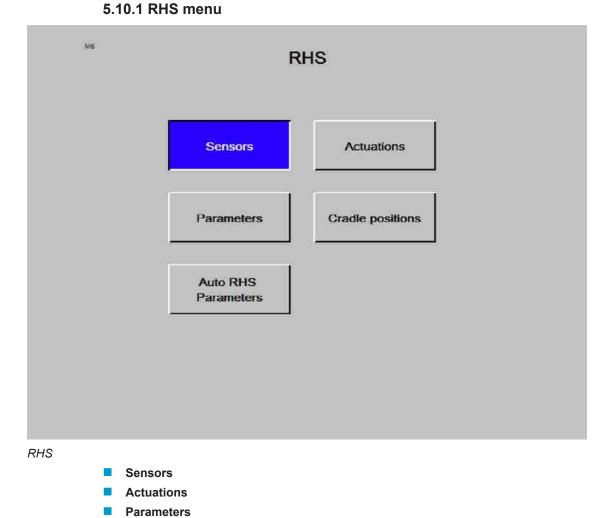
- Tramming high speed
- Hydraulic Jack In
- Hydraulic Jack Out
- Track oscillation lock
- Left Track Oscillation Fwd
- Left Track Oscillation Bwd
- Right Track Oscillation Fwd
- Right Track Oscillation Bwd
- Left Track, Fwd/Rev
- Right Track, Fwd/Rev
- Pump 1: Tramming / Drilling
- Positioning In Trammode

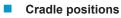
Actuate desired v	alue				
Function Actuated	l value	Desired value	Module	Contact	Marking
Cooling Fan Engine	0	0	D612	X7a	Y501
Cooling Fan Hyd. oil/Comp	r. O	o	D512	X8a	Y504

Rig - actuations - cooling fan

Cooling fan engine

Cooling fan hyd. oil/compr.


M5 3	Parameters
	Tramming
Parameters.	Tramming

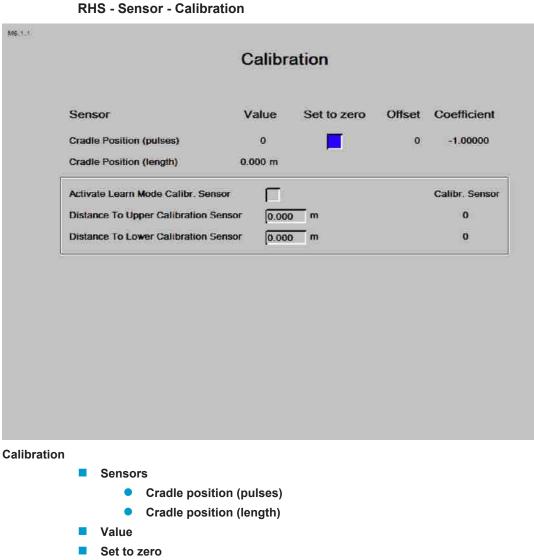

Left Track Forward			Right Track Forward		
Lowest valve current	0	mA	Lowest valve current	0	m A
Highest valve current	0	mA	Highest valve current	0	mA
Left Track Reverse			Right Track Reverse		
Lowest valve current	0	mA	Lowest valve current	0	mA
Highest valve current	0	mA	Highest valve current	0	mA
Time Acceleration Ramp	0.0	s			

Rig - parameters - tramming

- Left Track Forward
 - Lowest valve current
 - Highest valve current
- Right Track Forward
 - Lowest valve current
 - Highest valve current
- Left Track Reverse
 - Lowest valve current
 - Highest valve current
- Right Track Reverse
 - Lowest valve current
 - Highest valve current
- Time Acceleration Ramp

5.10 RHS

Auto RHS Parameters


Calibration									
Sensor	Value	Module	Contact	Marking					
Cradie Position (pulses)	0	D103	X 5	B172					
Upper Calibration Sensor	0	D103	X12a	B127					
Lower Calibration Sensor	0	D102	X7a	B122					
Arm in magazine	1	D102	X17a	8118					
Arm in middle position	0	D102	X18a	B119					
Arm in drill centrum	0	D102	X17b	B120					
Rod In Magazine Outlet	0	D102	ХВа	B178					
Stop pos magazine rotation CCW	0	D102	X11b	B183					
Stop pos magazine rotation CW	0	D102	X11a	B182					

RHS - Sensor

Sensors

The status of all the sensors involved in rod handling can be checked from this menu. The sensor module location, connector and marking are shown to facilitate fault finding where appropriate.

- Cradle Position (pulses)
- Upper Calibration Sensor
- Lower Calibration Sensor
- Arm in magazine
- Arm in middle position
- Arm in drill centre
- Rod in Magazine Outlet
- Stop pos magazine rotation CCW
- Stop magazine rotation CW

- Offset
- Coefficient
- Activate learn mode calibr. sensor
- Distance to upper calibration sensor
- Distance to lower calibration sensor
- Operate the cradle to mechanical stop.
- Set to zero by checking the boxes Set to zero and Activate learn mode calibr. sensor.
- Slowly operate the cradle down until it has passed the lower calibration sensor.
- The distance will automatically appear in boxes.
- Exit with ESC.

Actuate desired value	1	Actuations		Left Digital Right Digita Break Table	al Lever
Function Actuated valu	е	Desired value	Module	Contact	Marking
Grippers in Guide Position	0	O	D102	X24a	Y306
Grippers Open	0	O	D102	X10a	Y300
Magazine Outlet Open	0	0	D103	X6a	Y310
Rotate Gripper Towards Drillcentre	0	0	D103	X16a	Y311a
Rotate Gripper Towards Magazine	0	o	D103	X16b	Y311b
Arm to Drill Centrum	0	0	D103	хар	Y301b
Arm to Magazine	0	O	D103	X8a	Y301a
Magazine Rotation CW	0	0	D102	X6a	Y303a
Magazine Rolation CCW	0	0	D102	X6b	Y303b

RHS - Actuations

Actuations - Left Digital Lever

- Actuate desired value
- Function
 - Grippers in Guide Position
 - Grippers open
 - Magazine outlet open
 - Rotate Gripper Towards Drill Centre
 - Rotate Gripper Towards Magazine
 - Arm to drill centre
 - Arm to magazine
 - Magazine rotation CW
 - Magazine rotation CCW
- Actuated value
 - Desired value
- Module
- Contact
- Marking

621		A	ctuations			
Actuate de	sired value	÷				
Function	Actuated va	alue D	esired value	Module	Contact	Marking
Lower Drill Suppor	rt Closed	0	0	D103	X10b	Y361b
Lower Drill Suppor	rt Open	0	0	D103	X10a	Y361a
Upper Drill Suppor	rt Closed	0	O	D103	ХЭЬ	Y350b
Upper Drill Suppor	rt Open	0	O	D103	X9a	Y350a
Suction Hood Up		0	0	D103	X7a	Y357a
Suction Hood Dow	n	0	0	D103	X7b	Y357b

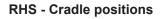
Actuations - Right Digital Lever

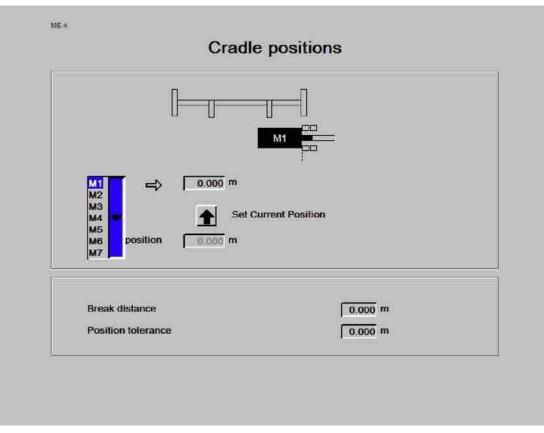
- Actuate desired value
- Function
 - Lower Drill Support Closed
 - Lower Drill Support Open
 - Upper Drill Support Closed
 - Upper Drill Support Open
 - Suction Hood Up
 - Suction Hood Down
- Actuated value
- Desired value
- Module
- Contact
- Marking

Actuate	e desired value					
Function	Actuated val	lue	Desired value	Module	Contact	Marking
Breaking Cylin	nder, CW	o	0	D103	X14a	Y352a
Breaking Cylin	nder, CCW	0	0	D103	X14b	Y352b
Break Out Jaw	rs, Lower Open	0	0	D103	X15a	Y354a
Break Out Jaw	s, Lower Closed	0	0	D103	X15b	Y354b
Break Out Jaw	s, Upper Open	0	0	D103	X24a	Y356a
Break Out Jaw	s, Upper Closed	0	0	D103	X24b	Y356b

Actuations - Break table

- Actuate desired value
- Function
 - Breaking cylinder, CW
 - Breaking cylinder, CCW
 - Break out jaws, lower open
 - Break out jaws, lower closed
 - Break out jaws, upper open
 - Break out jaws, upper closed
- Actuated value
- Desired value
- Module
- Contact
- Marking


	Parameters	RHS Threading Length Sensor Break Table
Drill Rod / Drill Tube		DTH - 4000 mm
S Drill Rod / Drill Tube		
	Threading	
Feed pressure backward, Feed pressure, threading Feed pressure, unthreading Rotation speed, threading	RHS ng	Image: Constraint of the second s
	S Drill Rod / Drill Tube Feed speed, threading Feed pressure forward, R Feed pressure backward, Feed pressure, threading Feed pressure, threading Feed pressure, unthreading Feed pressure, unthreading	Drill Rod / Drill Tube Drill Rod / Drill Tube Drill Rod / Drill Tube


RHS - Parameters

	Feed speed, unthreading		
	Feed pressure forward, RHS		
	Feed pressure backward, RHS		
	Feed pressure, threading		
	Feed pressure, unthreading		
	Rotation speed, threading		
	Rotation speed, unthreading		
M6.3.2	Langth Ca		
	Length Se	nsor	
	Pulses Per Revolution	48	
	Wheel Diameter	0.0 mm	
-			
Parameters - Le	ngth Sensor		

- Pulses per revolution
- Wheel diameter

Cradle positions

- Current position
- Set Current Position
- Break distance
- Position tolerance
- M1: Cradle in the lower position (should be about 3 cm above mechanical stop) (applicable when automatic rod handling is activated on the right-hand control panel).
- M2: Position for breaking of adapter-rod (applies when automatic rod handling is activated on the right-hand control panel).
- **M3:** Rapid feed stop forward.
- M4: Position for breaking rod-rod. Requires that Automatic rod extraction is activated in Direct selection menu F2.
- M5: Position for inserting rods into the carousel. Requires that Automatic rod extraction is activated in Direct selection menu F2.
- M6: Cradle in upper position.
- M7: Position when the upper drill-steel support can be closed when the first rod is drilled.

M5.5	Mais Auto RHS Parameters					
	Feed speed	Rotation				
	Timers	Others				
Auto RHS Para	ameters					
	Feed speed					
	Rotation					

- Timers
- Others (Not used)

M6.5.1	Feed speed	
	Feed Speed, Asyncronous Threading/Unthreading	0 mA
Feed speed		

RHS - Auto RHS parameters - Feed speed

Feed Speed, Asyncronous Threading/Unthreading

MG.	.5.3	Rotation			
		Max. Rotation Pressure Threading, Adapter-Rod (Y155) Max. Rotation Pressure Threading, Rod-Rod (Y155) Threshold Value For Threading Completed, Adapter-Rod Threshold Value For Threading Completed, Rod-Rod Max. Allowed Rotation Pressure, Unthreading (B101)	0	bar bar bar bar	
Rotation		Max. Rotation Pressure Threading, Adapter-Rod	(Y155))	

RHS - Auto RHS parameters - Rotation

- Max. Rotation Pressure Threading, Rod-Rod (Y155)
- Threshold Value For Threading Completed, Adapter-Rod
- Threshold Value For Threading Completed, Rod-Rod
- Max. Allowed Rotation Pressure, Unthreading(B101)

M6.5.4	Timers	
	Rotation Time For Loosening Adapter-Rod Joint 0.1 s	
Timers		

RHS - Auto RHS parameters - Times

Rotation Time For Loosening Adapter-Rod Joint

6 Hydraulic systems

6.1 Environmental considerations when handling oil

NOTICE Environmental effect Think of the environment! Leaking hydraulic connections and lubrication grease are environmentally hazardous Changing oils, replacing hydraulic hoses and different types of filter can be environmentally hazardous Always collect used oil, oil spillage, waste with oil content and lubrication grease residue and spillage. Treat in accordance with local regulations in force. Use biodegradable hydraulic fluids and lubrication oils for Atlas Copco products wherever possible. Contact your local Atlas Copco office for further information

6.2 General

Serious injury

Danger of burn injuries

▶ The hydraulic oil may reach a temperature of 80 °C

Risk of injury

Hazardous hydraulic oil pressure

- Risk of personal injury
- Working on the hydraulic system can involve a high risk of danger. Ensure the system is depressurised before starting work
- The hydraulic system may also be pressurised for a short time after the motor has been switched off

1

NOTE: The pressure in the hydraulic hoses may vary depending on the operating mode selected.

Risk of injury

Hazardous hydraulic oil and water pressure

- Can cause personal injury
- Never replace high pressure hoses with hoses of lower quality than the originals or with hoses fitted with removable couplings

The hydraulic system is sensitive to impurities. The environment in which a drill rig normally operates is usually unsuitable for repairing hydraulic components. Work on the hydraulic system on-site should therefore be limited to absolute necessities, i.e. only changing components. When changing valves, the unit in question must be well strapped and supported. Components should then be repaired in a suitable environment.

Observe the following points to avoid breakdowns and interruptions in operation due to fouled hydraulic oil:

- Keep the drill rig clean. Hose it down at regular intervals, preferably with an added grease solvent.
- Before opening any connection, clean the area round it thoroughly.
- Use clean tools and work with clean hands.
- Always plug hydraulic connections immediately after they have been detached.
- Use clean protective plugs.
- Hydraulic components, such as hoses, valves, motors, must always be kept with suitable protective plugs fitted.
- Spare parts for hydraulic components must always be kept in sealed plastic bags.
- Change filter cartridges as soon as the filters indicate clogging.

6.3 Repairing hydraulic components

Repairing and/or reconditioning hydraulic components should be carried out by expert personnel and in a suitable place. The following alternatives are possible:

- Suitable premises for hydraulic repairs to be arranged at the workplace. Repairs to be carried out by your own specially trained personnel, the manufacturer's technicians or Atlas Copco personnel.
- Components to be sent to the manufacturer's local agent for repair.
- Component repairs are carried out by Atlas Copco. Overhauling instructions are available for the most important and most complicated hydraulic components.

6.4 Replacement of hydraulic hoses

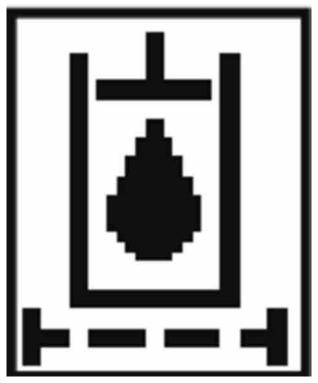
The high system pressure with safety valves set to 280 bar, together with the vibration and other mechanical strain, puts high demands on the hydraulic hoses. All hydraulic hoses are fitted with pressed couplings and should therefore be purchased ready-made from Atlas Copco. Hose dimensions and qualities are specified in the spare parts lists for the drill rig.

6.5 Hydraulic workshops

Workshops used for the repair of hydraulic components must:

- Be separate from activities which generate dust and particles, such as welding, grinding, the transportation of vehicles, etc.
- Have their own suitable washing equipment which is required for repairing the components.
- Have the necessary tools, both standard and special, that are only used in the hydraulic workshop.
- Have a ventilation system that does not admit dust into the premises.
- Have well-trained mechanics.

6.6 Filter


6.6.1 Return oil filter

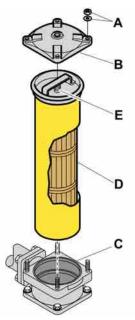
General

The return oil filter cleans the oil before it returns to the tank.

There are two return oil filters connected in parallel. A return oil filter consists of a tube containing two filter inserts. The tubes are mounted inside the hydraulic oil reservoir.

The filter inserts should be replaced according to the maintenance schedule but if the return filter's pressure gauge on the operator display indicates "Clogged filter" (red zone on the scale), all return oil filters must be changed immediately.

Symbol for clogged filter

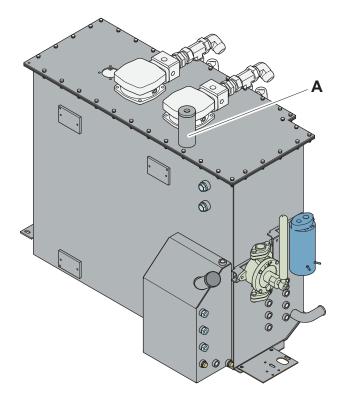


NOTE: The filter cartridges cannot be cleaned but must be replaced when they are clogged.

Changing the return oil filter

The filter inserts can be dismantled by removing the cover and lifting them up.

1. Clean on and around the filter cap and unscrew the nuts (A).


Changing filter

- 2. Lift off the cap (B) and replace the O-ring (C) if it is damaged.
- 3. Lift up the whole filter canister by the handle.
- 4. Detach the overflow valve (E) by pressing down and turning the handle anticlockwise.
- 5. Take out the filter cartridges (D) and replace with new ones.
- 6. Refit the overflow valve and filter canister and screw on the cap.

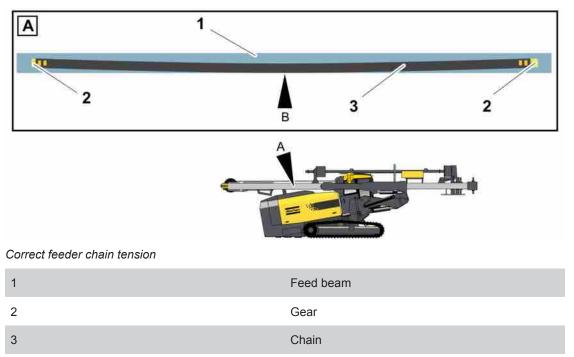
6.6.2 Breather filter

General

There is a breather filter (A) fitted on the hydraulic oil reservoir. The purpose of the breather filter is to equalise the pressure differences in the tank that would otherwise arise when the level in the tank changes if, for example, a jack is lowered.

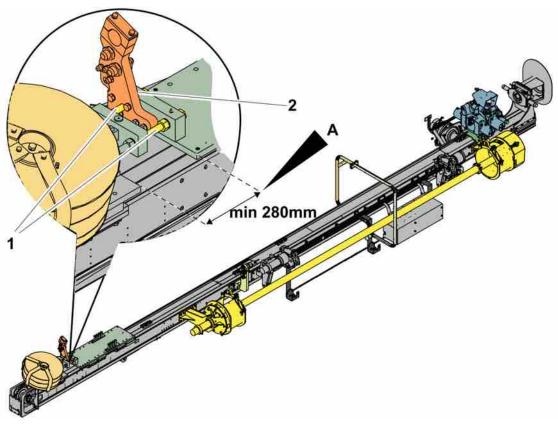
Breather filter

The breather filter must be replaced as set forth in the maintenance schedule and also if it is severely fouled.


NOTE: If the breather filter becomes covered in oil it will be ruined. This can happen if the tank is overfilled. The filter must then be changed.

Changing the breather filter

- 1. Wash clean on and around the filter (A).
- 2. Unscrew the old filter.
- 3. Fit a new filter.
- 4. Tighten the filter by hand.


7 Feeder

7.1 Feeder chain tension

It is important to ensure that the feeder chain has the correct tension. A poorly tensioned chain leads to increased wear on both the chain and associated components.

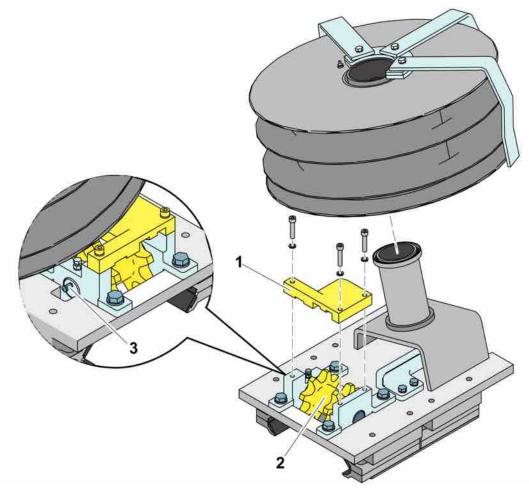
When the feeder chain is correctly tensioned it should come into contact with the inner edge of the lower prism on the feed beam at point (B) when the feeder is aligned in a horizontal position, e.g. tramming position.

tension, feeder chain

Tighten or loosen the feeder chain with the bolts (1).

If it is necessary to change the tension of the feeder chain, lubricate the bolts (1) via the grease nipples (2) before starting to adjust. A small amount of grease should also be applied directly to the threads at the same time.

The distance (A) must be at least 280 mm.

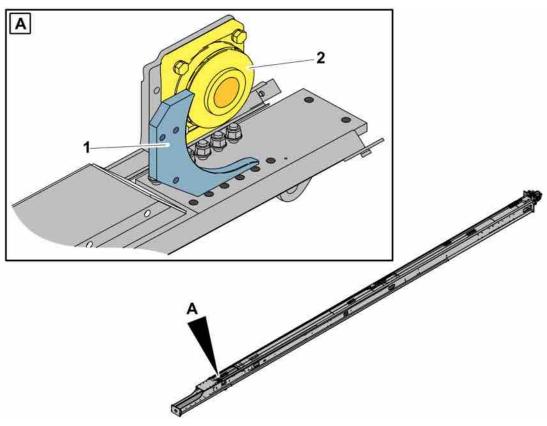

7.1.1 Feeder chain tension

7.2 Tension of hoses on the hose drum

- 1. Move the rotation unit halfway down on the feeder.
- 2. Fit a chain pulley block between the hose drum cradle and the top of the feeder.
- 3. Remove the cover plate on the hose drum cradle that holds the chain in place on the sprocket wheel.
- 4. Lift up the chain from the sprocket wheel using a crowbar or similar.
- 5. Pull the hose drum cradle along the feeder with the chain pulley block until the hoses are tensioned.
- 6. Remove the crowbar, refit the cover plate and remove the chain pulley block.

7.3 Climbing chain

7.3.1 Lubricating the sprocket wheel and checking the climbing chain cover.



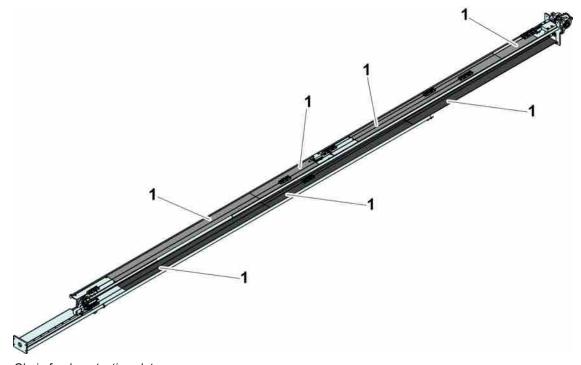
Climbing chain, sprocket wheel and climbing chain cover

The climbing chain's gear (2) is lubricated by means of filling 2 to 3 pump strokes of grease in the grease nipple (3) on the gear's shaft.

If the climbing chain cover (1) is worn then it must be replaced.

After a while the chain links will start to chafe against the jack chain cover. When this takes place, replace the jack chain cover.

7.4 Bearing unit and checking the chain guide


Bearing unit (2) and chain guide (1)

7.4.1 Replacing the bearing unit (chain feed)

After 5000 engine hours the bearing unit (2) should be replaced with a new unit.

Check the chain guide (1) for wear every 500 engine hours. If it is damaged or too worn then it should also be replaced with a new one.

7.5 Protective plates

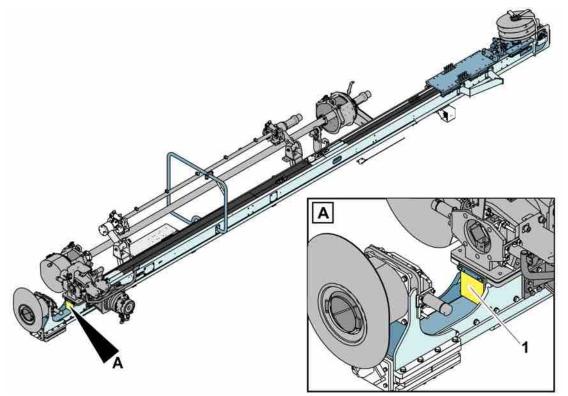
Chain feed, protective plates

The feed beam is equipped with black protective plastic plates (1). These are designed to stop the chain and beam causing damage to each other. They must be replaced when they become worn.

7.6 Checking for wear on the sprockets

A worn sprocket

Check whether there is any unevenness or if it jams when the chain engages and disengages from the gears.

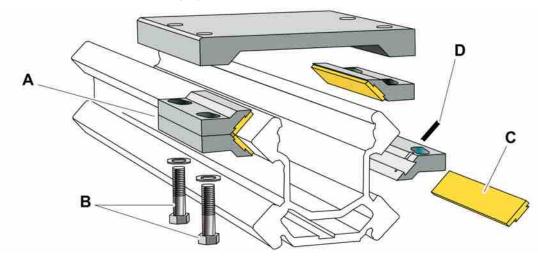

Inspect the teeth for reduced area and bent tips. If the teeth are too worn then the sprocket wheels should be replaced. (See figure: A worn sprocket).

Do not run a new chain on worn gears. It will lead to the new chain wearing out very quickly.

Do not run a worn chain on new gears since this will lead to the new gears wearing out quickly.

As a general rule, replace the gears every third chain replacement.

7.7 Sealing disc

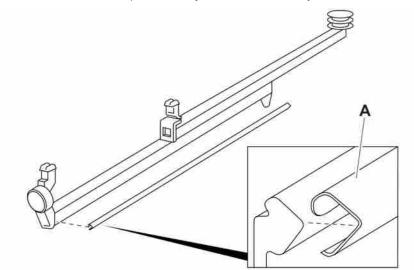



```
Sealing disc (1)
```

Cuttings accumulate over time behind the sealing disc (1). There is risk that the cuttings may damage the chain and gears. Bend the cutting disc down in order to clean out dirt collected behind it.

7.8 Replacing the slide pieces in the holder

Each holder has replaceable slide pieces. The slide piece (C) is kept in place by three keys (D). The slide pieces must be replaced at regular intervals so that the steel in the holder does not wear against the beam. Replace if there is less than 1 mm of wear allowance on the slide piece. It is a good idea to change all the slide pieces at the same time, even if some of them are slightly thicker.

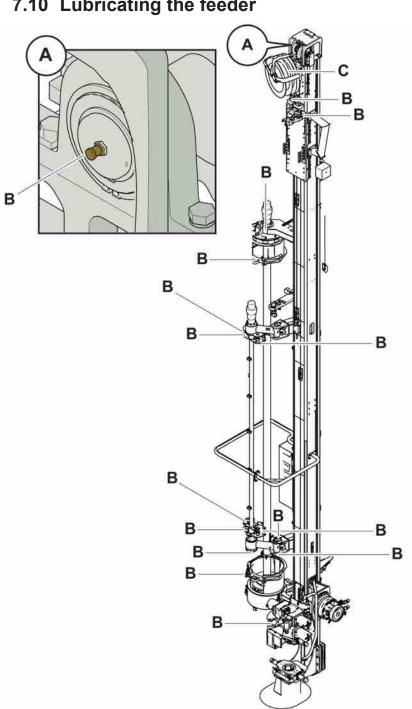

Replacing slide pieces

- Prise off the slide pieces (C) from the holder using a screwdriver and remove the keys (D).
- 2. Slide a new slide piece into the holder track and fit the new keys.
- 3. Makes sure that the holders are refitted to the cradle correctly and that they are adjusted so that the total lateral play is 2-3 mm.

7.9 Replacement of Slide Bars

NOTE: Always replace the slide pieces when replacing slide rails!

Slide rails should be replaced if they are worn or severely scratched.


Replacement of Slide Bars

The slide rails are divided up to facilitate replacement.

Before replacing the front slide rails, run the rock drill/rotation unit to its rear end position.

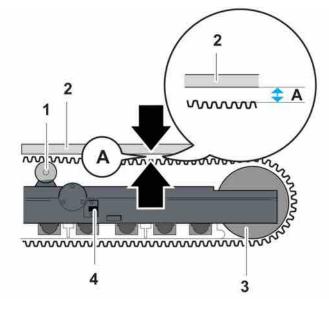
Before replacing the rear slide rails, run the rock drill/rotation unit to its front end position.

- 1. Remove the cradle for the rock drill, intermediate drill-steel support and the hose drum from the beam.
- Remove the old slide rails A by prising the lower edges of the bars outwards using a screwdriver.
- 3. Clean the beam surfaces thoroughly.
- 4. Fit the new slide rails. The larger edge on the slide rail must be facing upwards. The rails should be pressed in place by hand.
- 5. Refit the rock drill cradles, intermediate drill-steel support and hose drum. Adjust the holders on the cradles as described in the instructions.

7.10 Lubricating the feeder

The feeder requires lubrication at certain intervals. A number of red grease nipples (A) are located in different positions on the feeder. (B).

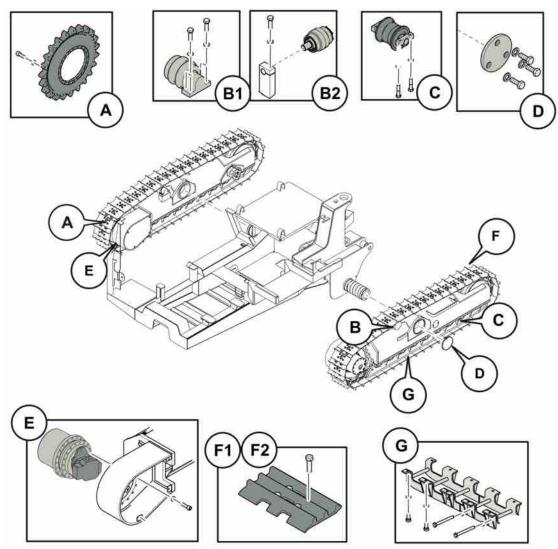
In order to reduce the wear of hoses over the drum the hoses (C) must be lubricated with grease regularly.


8 Track frames

8.1 Stretching the crawler tracks

NOTE: The clearance (A, see illustration: Crawler track) between the straightedge and the crawler track should be between 20 and 30 mm (0.8 and 1.2").

NOTE: The grease nipple should not be filled with grease during normal inspection.


Track tension is checked between the front wheel (3) and limberoller (1) when the drill rig is parked on a level surface with the tracks under normal load.

Crawler tracks

- 1. Place a straightedge (2, see illustration: Crawler track) on top of each track.
- 2. Pack with grease via the nipple (4) to tension the track.
- 3. If necessary, grease can be removed from the tension cylinder by unscrewing the nipple (4).

Tightening torques for track frames

	Size	Torque in Nm	Quantity/track frames	Comments
A	M16	295	20	
B1	M12	86	4	T45, C50, D50, D55, T50SF, C65SF
B2	M16	210	1	T50LF, D60, D65, C65LF
С	M16	210	32	
D	M12	90	3	
E	M16	295	18	
F1	9/16" UNF	260 ± 10	176	T45, C50, D50, D55, T50SF, C65SF

	Size	Torque in Nm	Quantity/track frames	Comments
F2	M16	370 ± 20	176	T50LF, D60, D65, C65LF
G	M16	210	28	
G	M16	210	10	

Table 13: Tightening torques for track frames

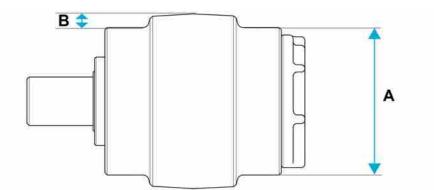
8.3 Check for wear

8.3.1 Procedures

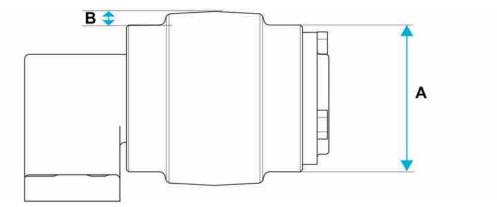
- Components on the track frames that show wear of 100% must be replaced by new components.
- Regular and accurate measuring is required in order to establish the extent of the wear and when replacement is necessary.
- The components must be thoroughly cleaned for measuring.
- Measuring must take place at several points. The degree of wear is determined by the maximum value, not the average value.

8.3.2 Check for wear on the track rollers

Check the wear by measuring the dimensions (A) and (B).



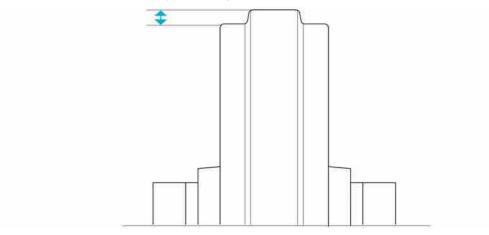
Track roller


	Wear	New track roller	25%	50%	75%	100%
А	mm	155.0	152,4	149,5	146,0	142,0
В	mm	17.5	18,8	20.3	22.0	24.0

8.3.3 Check for wear on the limberoller

Check the wear by measuring the dimensions (A) and (B) on the limberoller.

Limberoller T45, C50, D55, T50SF, C65SF

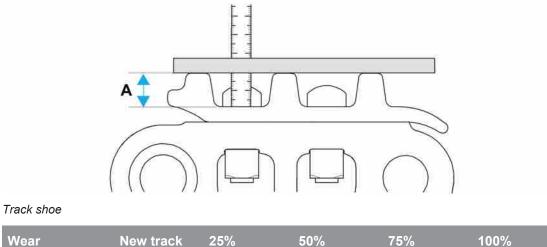


Limberoller T50LF, D60, D65, C65LF

	Wear	New limber- oller	25%	50%	75%	100%
А	mm	100.0	98,5	96,7	94,6	92,0
В	mm	7,5	8.2	9.1	10,2	11.5

8.3.4 Check for wear on the front wheel

Check the wear by measuring the distance between the top and bottom of the front wheel.

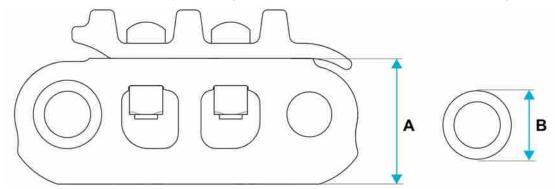


Front wheel

Wear	New front wheel	25%	50%	75%	100%
mm	17.5	19.1	20.9	23.0	25.5

8.3.5 Check for wear on the track shoe

Check the wear on the track shoe by measuring the distance (A) between the top and bottom of the track shoe.

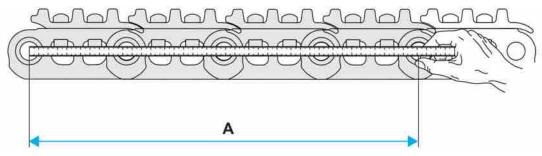


Wear	New track shoe	25%	50%	75%	100%
mm	25.0	20,4	15,7	10.9	6.0

Table 14: Triple grouser

8.3.6 Check for wear on the link and bushing

Check the wear by measuring the dimensions (A) and (B) on the link and bushing.

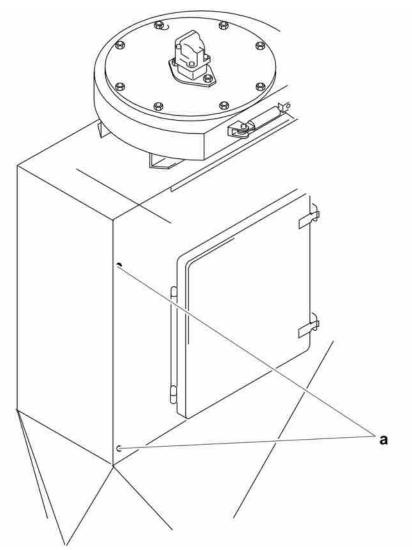


Link and bushing

	Wear	New link/ bushing	25%	50%	75%	100%
A	mm	89.0	87,6	86,0	84,2	82.0
В	mm	50,7	49,8	48,7	47,4	45,9

8.3.7 Check for wear on the chain

Check the wear on the chain by measuring the distance between the centre point in the first pin to the centre point in the fifth pin.



Track shoe

Wear	New chain	25%	50%	75%	100%
mm	686,0	688,5	691,4	694,8	698,7

9 Dust collector (DCT)

9.1 Filter test, dust collector (DCT)

Measurement points for dust collector filter

For checking filters in dust collector. Unscrew plugs (a) and apply a differential pressure gauge to the two holes.

Measure the pressure drop while air flushing is activated. If the drop is greater than an 800 mm (wg) column of water, all the filters should be replaced.

NOTE: If pump 3 does not maintain preset pressure it may be due to the dust collector filter being clogged.

NOTE: If the dust collector is operated with a deficient filter then the fan wings are worn.

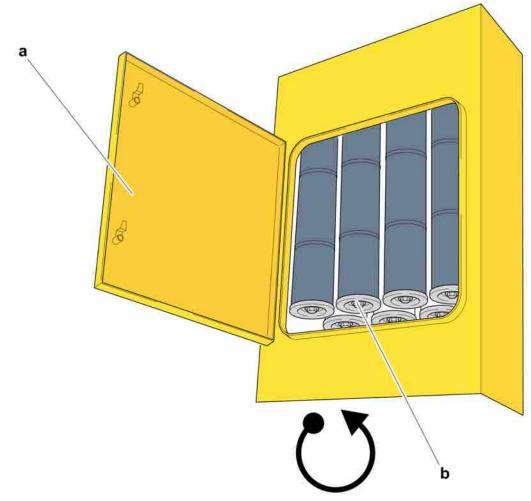
9.2 Adjust the suction capacity

Valve plate

The DCT's fan wheel is driven by P3.

Sometimes it is necessary to adjust the DCT's suction capacity. This is performed by adjusting the pressure for pump 3 on the valve block. The valve block is fitted on the DCT.

The pressure is adjusted with set screw CT3 and the fan wheel's brake time is adjusted with CT4.


You should aim for a distribution of 70% (pre-separator) - 30% (DCT). Brake time should be 8 - 10 seconds. Factory setting 140 bar.

9.3 Dust collector (DCT) filter change

The dust collector filter is located inside the dust collector. Open the door (a) and change all the filters.

Use a ring spanner to unscrew the filters. Screw the nuts on the bottom of the filters anticlockwise.

Recommended tightening torque when fitting the new filters is 18-20 Nm.

Dust collector

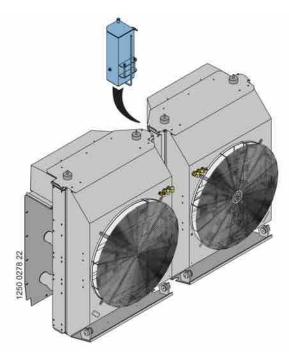
10 Radiator

10.1 Environmental issues when handling coolant


NOTICE

Environmental effect

Think of the environment!


- Chemicals, e.g. flushing additives, other additives and coolants, can be environmentally hazardous.
- Treat in accordance with local regulations in force for both handling and waste disposal.

10.2 Coolant

The drill rig has two radiators. The left-hand radiator is for the compressor oil and hydraulic oil. The right-hand radiator is for the engine's coolant.

Checking and filling coolant takes place in a separate expansion tank. Only CAT ELC coolant may be used.

Radiator and expansion tank

11 Diesel engine

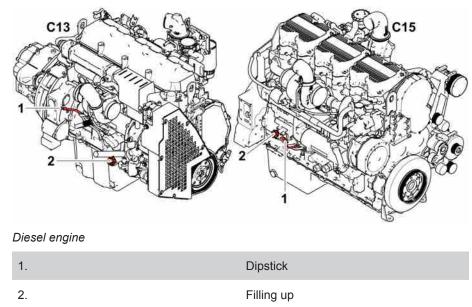
11.1 Safety

	WARNING
	Serious injury
	Danger of rotating parts
	Hot engine and components
	Very high exhaust temperatures
	Can cause serious personal injury
►	Maintenance work on the drill rig must only be carried out when the engine is switched off

11.2 Environmental issues when handling oil

NOTICE
Environmental effect
Think of the environment!
Leaking hydraulic connections and lubrication grease are environmentally hazardous.
Changing oils, replacing hydraulic hoses and different types of filter can be environ- mentally hazardous.
Always collect oil residue, oil spillage, waste with oil content, and lubrication grease residue and spillage. Treat in accordance with local regulations in force.
Use biodegradable hydraulic fluids and lubrication oils for Atlas Copco products

wherever possible. Contact your local Atlas Copco office for further information.

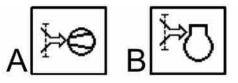

11.3 Oil for the diesel motor

NOTE: See also the separate operating instructions for the diesel motor, for details of diesel motor maintenance.

NOTE: Top up (2) if the oil level is below or level with the lower mark on the dipstick.

1. Check that the oil level is between the upper and lower marks on the dipstick (1).

2. Top up (2) if the oil level is below or level with the lower mark on the oil dipstick (see the table "Recommended oils and lubricants").


11.4 Maintenance of components

11.4.1 Air filter for engine and compressor, service intervals

The air filters consist of filter housing with cover, filter cartridge, safety cartridge, indicator and evacuation valve. Cleaning is carried out in two stages. The first stage comprises a cyclone and the second stage a normal filter. Both cleaning stages take place in the filter housing.

A filter's performance will improve right up until it becomes clogged. For this reason the filter cartridge should not be replaced at regular intervals, but only when it starts to become clogged. The filter cartridges must never be cleaned as this impairs filtration and also risks damaging the filter element.

There is an indicator fitted onto the filter housing to advise when the filter cartridge is clogged. It is connected to the HEC display in the cabin, or the LCD display on the left-hand side of the rig for cabinless rigs. A yellow warning symbol is visible on the status bar at the bottom of the display if a filter starts clogging. The indicator must be checked every 1000th engine hour.

Warning symbols on the rig's HEC display

Warning symbol for compressor air filter

A B

Warning symbol for engine air filter

The discharge from the first stage of the cleaning flows through a single evacuation valve. This should preferably be checked once each shift.

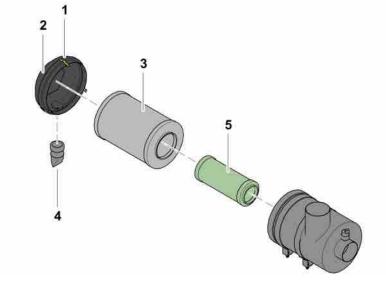
The filter housing also contains a safety cartridge which must be replaced every third time the filter cartridge is replaced.

If maintenance and replacement at fixed intervals is necessary for any reason, which is not normally recommended, then the following guidelines apply.

Hours	0	500	1000	1500	2000
Replacing the filter cartridge and cleaning the filter housing	New	X	X	X	X
Replacing the safety cartridge	New	-	-	Changing	-
Indicator test	-		Х		Х

Table 15: Intervals for filter maintenance

11.4.2 Air filter for engine and compressor, maintenance


NOTE: Never clean the filter cartridges.

NOTE: When an evacuation valve is damaged, replace it.

NOTE: If the warning symbol for clogged air filter remains visible, the safety cartridge must also be replaced.

Replacing the filter cartridge

1. Undo clamps (1) and remove the cover (2).

Air filter

- 2. Remove the main cartridge (3).
- 3. Clean inside the filter housing and lid with a clean, dry rag.

NOTE: NOTE! If the safety cartridge has also been removed for changing, the filter housing air outlet must be completely covered with adhesive tape before cleaning the filter housing.

- 4. Check that the evacuation valve (4) is not damaged. Change it if necessary.
- 5. Remove any adhesive tape there may be on filter housing air outlet.
- 6. Install a new main cartridge and a new safety cartridge if required.
- 7. Refit the cover and fasten the clamps.

Checking the indicator

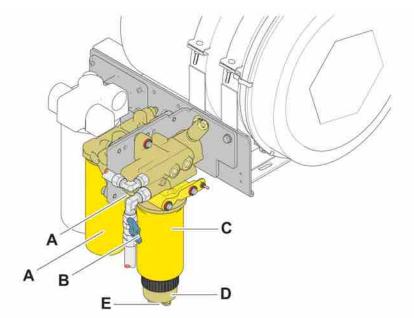
To ensure filter clogging is detected, the function of the indicator (6) must be checked regularly. This is done by gradually blocking the air intake with a piece of wood or similar. The indicator should then signal and the warning symbol should be visible, or the warning light should illuminate. If the warning does not indicate, start by checking the cable connections. If there are no problems with the connections, then the indicator is faulty and must be replaced.

NOTE: The indicator is not included in the filter housing, but is ordered separately.

Take care to use a whole and clean piece of wood so that dirt or other particles do not enter the filter housing.

11.4.3 Fuel system

Fuel quality


See the chapter Oils and fuel.

Filter

There are two types of fuel filter for the diesel engine, a primary filter and two secondary filters.

The diesel engine fuel filter must be changed and not cleaned.

Primary and secondary filters

Primary and secondary filters

Drainage

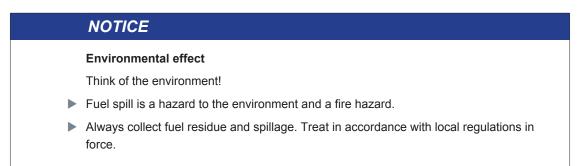
 Drain the water from the primary filter container daily by closing the fuel cock (B) and opening the drain cock (E).

Replacing the primary filter

- Remove the filter bowl (D) and clean with pure diesel fuel.
- Remove the fuel filter (C) and then clean the sealing surface on the base of the filter. Make sure all the remnants of the gasket have been removed.
- Apply pure diesel oil to the new fuel filter gasket.
- Screw on the new fuel filter on the base of the filter until the gasket makes contact with the filter base. Use the twist marks to aid tightening. Tighten the filter a further three quarters of a turn by hand. Do not tighten the filter too hard.
- Screw the clean filter bowl (D) back in place.

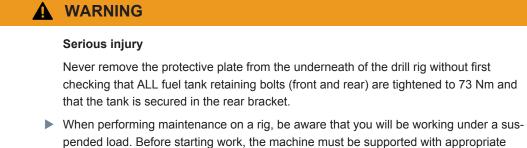
Replacing the secondary filter

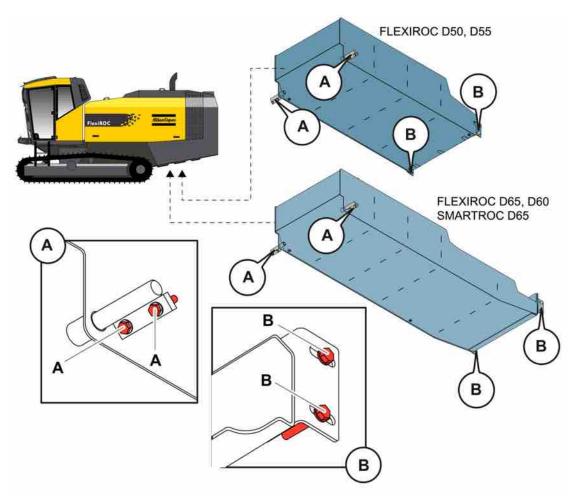
- Close the fuel cock for the primary filter (B).
- Slacken off the secondary filters (A) using a suitable tool and remove them.
- Collect any residual fuel.
- Clean the filter holders seal surfaces of dirt.
- Apply a thin layer of oil to the new fuel filter rubber seals.


NOTE: The primary filter/water separator can be filled with fuel in advance so that the engine does not run unevenly or stop due to air bubbles. Do not fill the secondary fuel filter with fuel before installation. The fuel would not then be filtered and could be contaminated. Contaminated fuel increases the wear on the components of the fuel system.

Filter for DEF tank

Changing the DEF tank filter:


See separate instructions from diesel engine.


11.4.4 Environmental issues when handling fuel

11.4.5 Fuel tank brackets

jack stands.

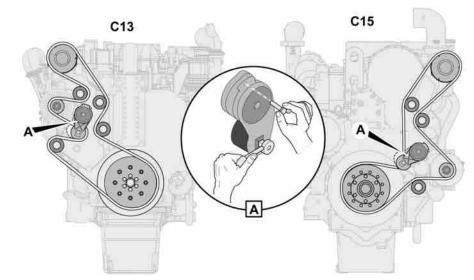
Fuel tank brackets

Check that the front fuel tank retaining bolts (A) are tightened to the correct torque of 73 Nm every 500 engine hours.

All fuel tank retaining bolts (A + B) and mountings must be checked before performing any maintenance under the rig.

11.4.6 Draining the fuel tank

Always fill the fuel tank with clean diesel oil and fuel of the correct grade for the temperature.

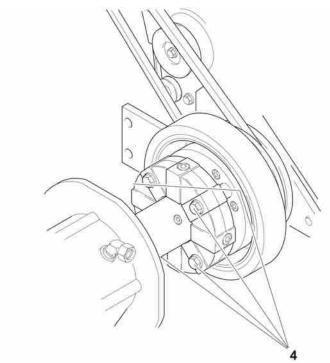

- 1. Undo the front protective plate on the underside of the drill rig.
- 2. Undo the bottom plug by holding the nut with a 22 mm ring spanner and unscrewing with an 8 mm Allen key. Allow the water to drain.
- 3. Use track oscillation to tilt the drill rig in order to drain the tank completely.
- 4. Tighten the plug so the diesel oil cannot leak out.

11.4.7 Drive belt

Replacing the multi-belt

Make sure the engine is switched off.

1. Remove the belt cover.



2. Ease up on the belt tension by turning the tensioning wheel (A).

Belt tension

NOTE: See the chapter Technical data for the correct engine alternative.

- 3. Secure the tensioner wheel in the position where the belt is slack using a pin (A).
- 4. Undo and pull out the four bolts (4) in the shaft coupling until there is play.

Undo the bolts

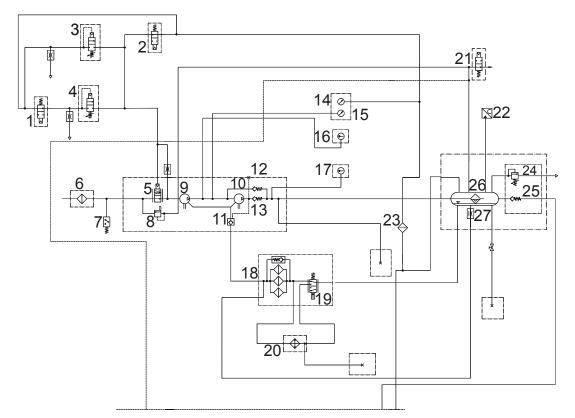
- 5. Replace the belt by inserting it through the clearance between the coupling rubber and the shaft flange.
- 6. Screw back the coupling rubber and tighten the bolts (185Nm).

- 7. The belt is tensioned automatically when the lock-out assembly is removed from the tensioning wheel.
- 8. Refit the belt cover.

11.4.8 For further instructions, see separate instructions for the diesel engine.

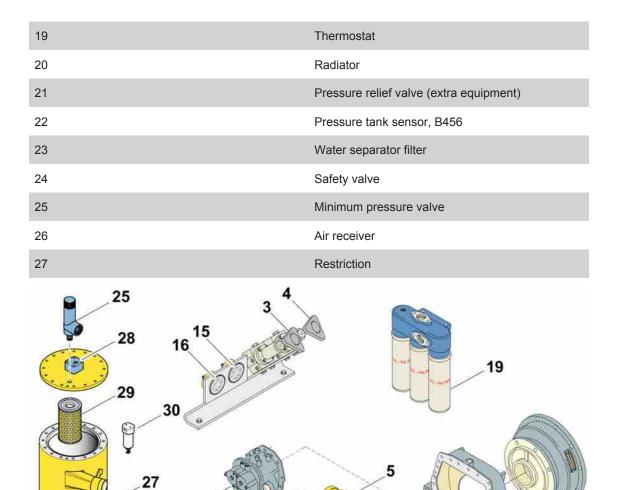
12 Compressor and air system

12.1 Safety


WARNING
Serious injury
High system pressures and temperatures
Can cause personal injury
Never perform maintenance work while the drill rig is operating
Make sure that the hydraulic, water and air systems are depressurised and that the electrical system is de-energised before starting work on the rig.
The use of incorrect or used oil, or mixing oils, may involve a risk of fire or explosion in the compressor system.
Risk of fire if the intervals for changing compressor oil are not observed

The compressor may emit pressure up to 35 bar. The compressor oil must cool down before work on the compressor is started. The oil can reach temperatures of 130°C during operation. When replacing air hoses, use only Atlas Copco original hoses, or consult Atlas Copco. In the event of a suspected leakage you must absolutely not use your hands to detect/search for the leakage. Such a procedure could lead to immediate fatality.

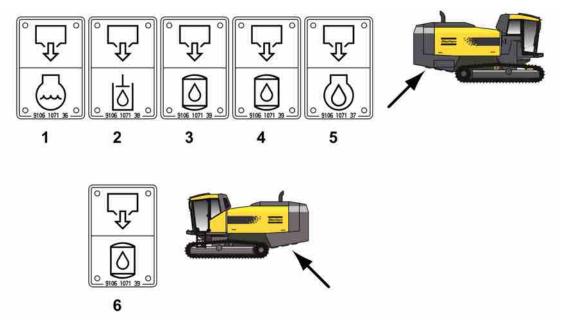
Hoses must be considered as consumable items. For this reason, all hoses between compressor and pressure tank must be replaced at a maximum interval of 5 years.


12.2 Compressor description

The rig is equipped with a two-stage screw compressor which is driven by the diesel engine. The compressed air from the compressor flows to an air receiver which also functions as an oil separator. The majority of the oil is removed in the air receiver by means of centrifugal force. The remainder is separated in an oil separator element in the air receiver. The separated oil is collected in the lower part of the air receiver, which functions as an oil tank.

Diagram, compressor system

1	Loading valve Y210B
2	Loading valve Y210A
3	Control valve, high percussion pressure
4	Control valve, low percussion pressure
5	Intake valve
6	Air filter
7	Filter indicator
8	Drain valve
9	Compressor, low pressure stage
10	
10	Compressor, high pressure stage
11	Oil stop valve
11	Oil stop valve
11 12	Oil stop valve Pressure Relief Valves
11 12 13	Oil stop valve Pressure Relief Valves Check valve
11 12 13 14	Oil stop valve Pressure Relief Valves Check valve Pressure gauge, tank pressure
11 12 13 14 15	Oil stop valve Pressure Relief Valves Check valve Pressure gauge, tank pressure Pressure gauge, intermediate stage pressure

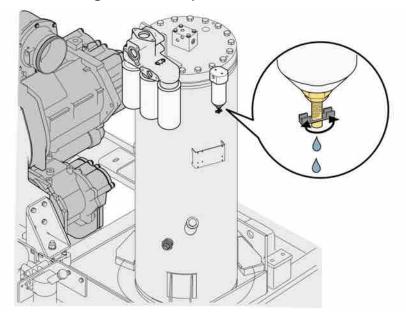


Compressor parts

3	Control valve, high percussion pressure
4	Control valve, low percussion pressure
5	Intake valve
9	Compressor, low pressure stage
10	Compressor, high pressure stage
11	Oil stop valve
13	Pressure Relief Valves
14	Check valve
15	Pressure gauge, tank pressure
16	Pressure gauge, intermediate stage pressure
19	Oil filter

25	Safety valve
26	Minimum pressure valve
27	Air receiver
28	Restriction
29	Oil separator element
30	Water separator filter

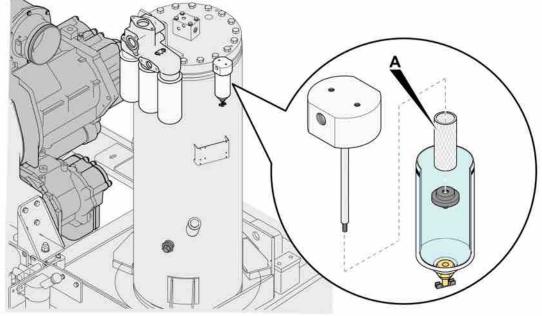
12.3 Maintenance



Right and left-hand draining points

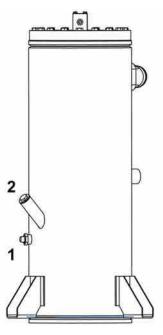
1	Engine radiator
2	Hydraulic oil cooler
3	Compressor cooler
4	Compressor element
5	Engine oil
6	Compressor tank

12.3.1 Draining the condensate in the pressure tank


The pressure tank must be drained of condensate daily, preferably before the start of the work shift. The rig must have been switched off for at least 1 hour. Draining is performed from the cock (6) at the draining point on the left-hand side of the rig.

12.3.2 Draining the water separator filter

The water must be drained on a daily basis, preferably before the work shift. Drain by opening the cock under the water separator filter.



The filter element (A) must be replaced in accordance with the interval in the maintenance schedule.

12.3.4 Checking the oil level

Check the oil level daily.

- 1. Make sure the rig is standing level.
- 2. Switch off the rig and allow the oil level to settle for at least 5 minutes.
- 3. Check the compressor oil level. The indicator on the gauge (1) must be in the green zone.
- 4. Fill with oil at (2), if required.

NOTE: Never fill with too much oil. Overfilling results in high oil consumption. **NOTE:** Take care to use the correct oil grade". See "Recommended oils and lubricants".

12.3.5 Changing oil and oil filter

The intervals for oil change are determined by oil grade and operating temperature. The prescribed interval (see maintenance schedules) is based on up to a certain oil temperature and normal operating conditions (see oil temperature under the heading "Safety" in the chapter "Compressors and air system" in the maintenance instructions). Oil should be changed more frequently when working in high ambient temperatures or very dusty or damp conditions.

- Run the compressor to operating temperature. Switch of the engine and wait until the pressure has eased through the automatic outlet valve. Unscrew the oil filler plug one turn. This uncovers a ventilation hole which releases pressure from the system.
- Drain the oil through the removed drain plugs for compressor tank, compressor cooler and compressor element. Collect the oil in a receptacle. Screw out the plug on the filter housing to speed up the draining. Tighten the plugs after draining.
- Remove the oil filters, for example by means of a special tool. Collect the oil in a receptacle.
- 4. Clean the filter seat on the filter housing using oil, and make sure that no dirt falls down into the system. Lubricate the gasket on the new filters. Screw the filters in place until the gasket makes contact with the seat. Then screw a further half turn.

- Fill the air receiver until the oil level reaches the filler pipe. The indicator on the gauge

 must be in the upper section of the green zone. Make sure that no dirt falls down
 into the system. Fit and tighten the filler plug once again.
- 6. Operate the unit without any load for several minutes in order to circulate the oil and force out any air in the oil system.
- 7. Stop the compressor. Allow the oil to settle for several minutes. Check that the system is depressurised. Unscrew the filler plug (2) and fill with oil until the indicator on the oil level gauge (1) is once again in the green zone. Fit and tighten the filler plug once again.

NOTE: If the oil has been destroyed due to the use of incorrect oil or excessive temperature, or overextended operating time following the latest change, then the system must be flushed clean before new oil is filled. See "Changing to new type of oil" for the method.

NOTE: Never fill with too much oil. Overfilling results in high oil consumption. Take care to use the correct oil grade". See "Recommended oils and lubricants".

12.3.6 Changing to new type of oil

To avoid problems when changing to a new type of oil (see table below), a special procedure for compressor oil flushing must be followed. The table is only applicable if the replaced oil has not passed its expiration date. Old oil is best detected by using an analysis program for oil samples, SOS (Scheduled Oil Sampling). Indications that the oil is old are that it smells strongly, that there are contaminants such as sediments inside the oil reservoir and the stop valve, or that the oil has a brownish colour.

~	Paroil M	Paroil S	Paroil Sxtreme
Paroil M	drainage*	flushing	flushing
Paroil S	drainage**	drainage*	drainage
Paroil Sxtreme	drainage**	drainage	drainage*

* When changing to the same oil within the interval between changes, drainage is sufficient. ** Change not recommended

A	Underside of reservoir cover plate
В	Inside of reservoir
С	Hose connections
D	Oil stop valve
E	Pipe

Procedure for compressor flushing

- First of all, the system must be drained thoroughly when the oil is hot so that as little oil as possible is left in the system, especially in inaccessible areas. If possible the oil system must also be pressure washed so that the remaining oil will be blown out. See step 1 and 2 under the heading "Change of oil and oil filter" for detailed description.
- 2. Remove the oil filters (a).
- 3. Open the cover plate on the air receiver and remove the oil separator element.
- Check the inside of the oil reservoir. If sediments are detected, the parts (A-E) must be thoroughly cleaned before the process is completed. Contact Atlas Copco's service department.
- 5. Insert a new oil separator element, screw on the new oil filter and close the valve in accordance with the instructions under the heading "Changing oil and oil filter".

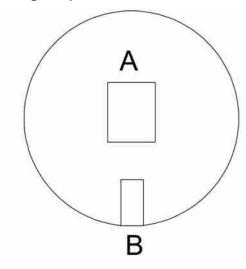
- 6. Fill the oil reservoir with the minimum amount of oil permissible and run the compressor unloaded in light mode for 30 minutes.
- 7. Drain the system thoroughly when the oil is hot so that as little oil as possible is left in the system, especially in inaccessible areas. If possible the oil system must also be pressure washed so that the remaining oil will be blown out.
- 8. Fill the system to full level.
- 9. Run the compressor unloaded in light mode for 15 minutes and check for leaks.
- 10. Check the oil level and fill if necessary.
- 11. Collect all surplus lubricant and discard it in accordance with regulations for handling waste lubricants. See the chapter "Oils and fuel" in the maintenance instructions.

12.3.7 Cleaning the oil cooler

Keep the compressor oil cooler clean using compressed air in order to maintain efficient cooling.

12.3.8 Test pressurising the safety valve

- 1. Disconnect the cables for the flushing air valves Y115 and Y116:
- 2. Load the compressor (S180 in the cabin).
- 3. Activate high percussion (S446 in the cabin).
- 4. Note the current pressure on the pressure gauge 15.
- 5. Adjust the regulator for high pressure until the safety valve is triggered. The pressure must then not have exceeded maximum triggering pressure in accordance with the table below.


Rig model	Maximum triggering pressure
FlexiROC D50	32 bar
FlexiROC D55	35 bar
FlexiROC D60	32 bar
SmartROC and FlexiROC D65	35 bar

- 6. Adjust the regulator for high pressure so that the pressure returns to the previous value.
- 7. Reconnect the cables for the flushing air valves Y115 and Y116:

NOTE: The regulator must not be adjusted during drilling.

NOTE: Under no circumstances may the set pressure of the safety value be changed to a pressure other than that stamped on the value.

12.3.9 Checking the pressure sensor B456

Pressure tank's top side

A	Valve plate
В	Pressure sensor B456

Check that the tank pressure shown on the display corresponds with the tank pressure shown on the pressure gauge at the regulators. The difference must be no greater than 0.1 bar.

12.3.10 Checking the start protection

If tank pressure exceeds 1.5 bar then the engine cannot be started.

- 1. Switch off the engine without unloading the compressor.
- Try to start the engine again immediately while the pressure exceeds 1.5 bar. The engine cannot be started.

12.3.11 Checking the minimum charge pressure

If tank pressure is less than 4 bar then the compressor cannot be loaded.

- 1. Set the drill rig in Tramming position with button (5) on the left-hand operator's panel.
- 2. Set engine speed to 1500 rpm.
- 3. Load the compressor with button (5) on the right-hand operator's panel.
- 4. Check that the compressor does not load until the tank pressure reaches 4 bar.

12.4 Control system

12.4.1 System description

The control system consists of:

- Control valve for low percussion pressure
- Control valve for high percussion pressure
- Loading valve (solenoid valve) Y210A

- Loading valve (solenoid valve) Y210B
- Flushing air valve Y115
- Flushing air valve Y116

When the compressor is unloaded the loading valves Y210A and Y210B are 0-activated (open). When the compressor is loaded (button (5) on the right-hand control panel) the solenoid valve Y210A will be activated (closed) and lead the air over the low pressure regulator (4) provided that the pressure is above 4 bar.

When low percussion is activated (S38 moved halfway forward) the low flushing air valve (Y116) will be activated and release air to the hammer. On the low flushing air valve it is possible to adjust the air flow to the down-the-hole drill to a moderate flow for collaring.

When high percussion is activated (S38 moved fully forward) Y210 B will also be activated (closed). This results in the air being directed over the high-pressure regulator (3). Now the high flushing air valve will also open (Y115) which results in full pressure and full air flow to the hammer.

12.4.2 Setting the percussion pressure

Setting the percussion pressure is carried out by setting the tank pressure during disengaged percussion.

Recommended tank pressure is 32 bar for high percussion pressure and 20 bar for low percussion pressure

- 1. Make sure the percussion is switched off.
- 2. Load the compressor. (Button (5) on the right-hand control panel.)
- 3. Adjust both control valves (3, 4) alternately until the recommended high percussion pressure is obtained on pressure gauge (15).
- 4. Adjust the control valve for low percussion pressure (4) until the recommended low percussion pressure is obtained on pressure gauge (15).

NOTE: The adjustment must not be made during drilling.

NOTE: Percussion pressure is affected by many factors such as rock properties, size of and wear on the down-the-hole rock drill, the drill bit, drill feed pressure, down-the-hole rock drill air consumption etc.

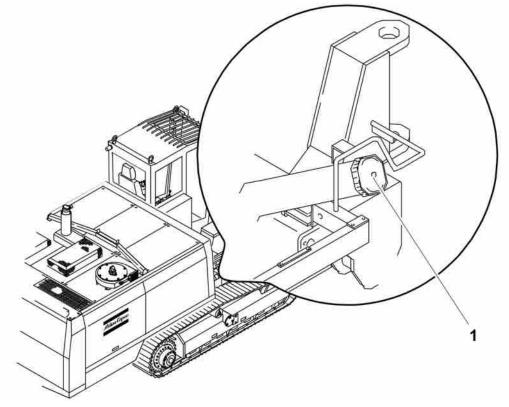
13 Oil and fuel

13.1 Environmental issues when handling fuel

NOTICE

Environmental effect

Think of the environment!


- Fuel spillage is environmentally hazardous and a health risk.
- Always collect fuel residue and spillage. Treat in accordance with local regulations in force.

13.2 Filling fuel

Switch off the engine before topping up the fuel. Do not handle fuel in the vicinity of hot surfaces, sparks or naked flames.

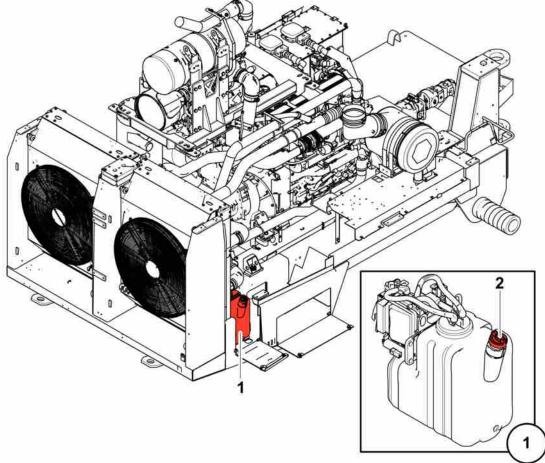
Cleanliness is important when filling with fuel. Ensure that the tank and tank cover are clean. Fuel should not be added if there is a risk that it is contaminated, for example in windy or wet weather, or when there is dust in the air.

Fuel which is stored must not have contact with the air, but should be stored in a closed vessel. The vessel must be approved for its purpose and shall be clean.

Filling fuel

1

Location of fuel filler orifice


NB! Use Ultra Low Sulphur Diesel (ULSD). It must not have more than 15ppm Diesel Fluid Sulphur.

13.3 DEF (Diesel Exhaust Fluid)

DEF fluid must meet the requirements specified in ISO 22241-1. Read the CAT manual for more information about DEF.

When the DEF tank is almost empty, a series of warnings will be shown on the rig's display. When the tank is empty, the engine is switched off.

13.3.1 Filling DEF (Diesel Exhaust Fluid)

DEF (Diesel Exhaust Fluid) tank (1)

The DEF tank (1) is topped up at each refuelling.

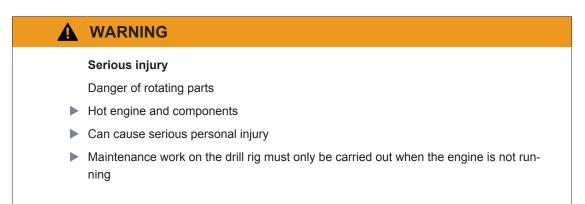
(2) DEF filler location. Do not overfill the tank. In cold climates DEF freezes and needs space so that the fluid can expand in the tank.

Do not use a contaminated container or funnel when filling the DEF tank.

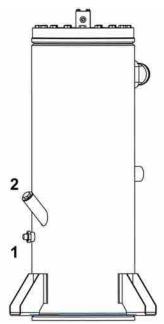
13.3.2 Storing DEF (Diesel Exhaust Fluid)

DEF (Diesel Exhaust Fluid) degrades over time and no longer meets the requirements for the DEF system. DEF (Diesel Exhaust Fluid) degrades even faster in hot temperatures. Read the CAT manual for more information about DEF.

13.4 Environmental considerations when handling oil


Environmental effect

NOTICE


Think of the environment!

- Leaking hydraulic connections and lubrication grease are environmentally hazardous.
- Changing oils, replacing hydraulic hoses and different types of filter can be environmentally hazardous.
- Always collect oil residue, oil spillage, waste with oil content, and lubrication grease residue and spillage. Treat in accordance with local regulations in force.
- Always use biodegradable hydraulic fluids and lubrication oils for Atlas Copco products wherever possible. Contact your local Atlas Copco office for further information.

13.5 Compressor oil

Check the oil level daily.

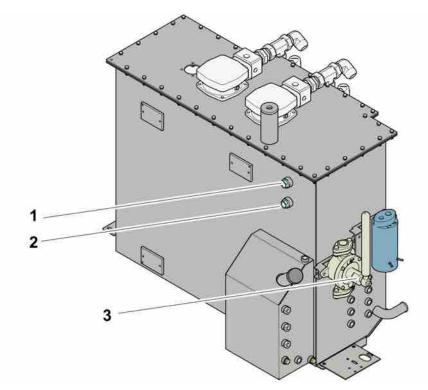
1. Make sure the rig is standing level.

- 2. Switch off the rig and allow the oil level to settle for at least 5 minutes.
- 3. Check the compressor oil level. The indicator on the gauge (1) must be in the green zone.
- 4. Fill with oil at (2), if required.

NOTE: Never fill with too much oil. Overfilling results in high oil consumption.

13.6 Oil sampling

An oil sample gives a good indication of how well the hydraulic system has been maintained.


13.7 Hydraulic oil

NOTE: Do not fill up with too much hydraulic oil as it might then clog the ventilation filter.

The hydraulic oil level can be read in the sight glass on the front of the hydraulic oil reservoir. The lower sight glass (2) should be full and the upper sight glass (1) should be half full.

- Check the hydraulic oil level (1 and 2)
- Fill with the hand pump (3) if necessary (see the chapter "Recommended oils and lubricants")

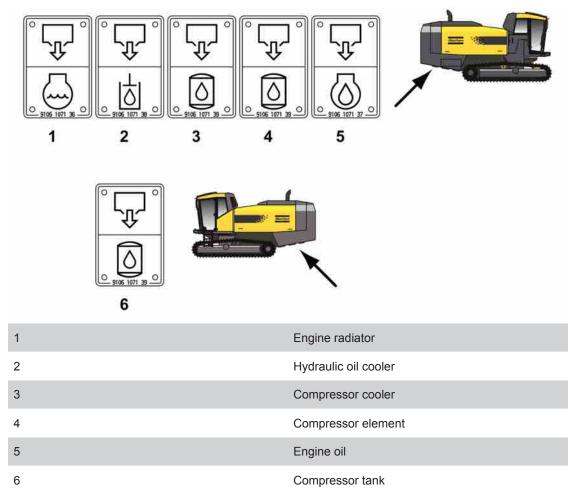


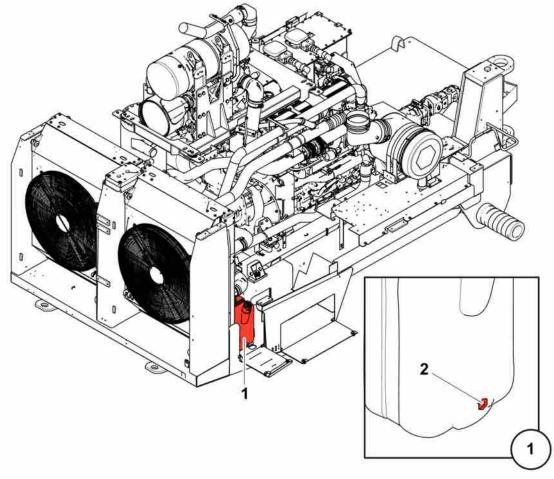
Hydraulic oil reservoir

13.8 Lubrication

The lubricating oil tank (1) is fitted on the hydraulic oil tank (2).

The lubricating oil level can be read in the sight glass (4). In the event of a low level there is also a warning on the display for engine and directional instruments.




Fill (3) if necessary (see the chapter "Recommended oils and lubricants").

NOTE: Always use a funnel with strainer when refilling. **NOTE:** If the lubricating system is fully drained of oil then the system must be bled. See the maintenance instructions for the drill system.

13.9 For engine oil and fuel, see chapter "Diesel engine".

13.10 Draining the fluids

13.10.1 Draining DEF (Diesel Exhaust Fluid)

DEF tank drain plug (2)

Drain the DEF fluid by unscrewing the DEF tank (1) drain plug (2).

13.11 Recommended oils and lubricants

13.11.1 Engine oil

Ambient temperature °C	Atlas Copco Fluids
-30 to 0	Engine 200
> 0	Engine 100

Table 16: Ambient temperature °C

13.11.2 Hydraulic oil

Use mineral based or synthetic (polyalphaolefin or diester) hydraulic oil with good rust, wear, oxidising and foam inhibitive properties and good air and water separation ability. Select an oil with viscosity grade (VG) and viscosity index (VI) specified in the "Ambient temperature" table. Oil with high viscosity index is less temperature dependent.

NOTE: Surplus oil should be disposed of in an environment-friendly manner as prescribed by the authorities.

Ambient temperature. 25-50 (°C) St.	Viscosity grade VG (ISO 3448)	Viscosity index VI
+ 25 to +50	ISO VG 68	Min. 150
0 to +25	ISO VG 46	Min. 150
-30 to 0	ISO VG 32	Min. 150

Table 17: Ambient temperature °C

NOTE: When operating in extremely low temperatures, installation of an extra heater is recommended.

13.11.3 Lubricating oil tank (ECL) (ECG) (HECL)

Atlas Copco recommends the use of Atlas Copco COP OIL which has been specially developed for our hydraulic rock drills and DTH hammers.

COP OIL is an environmentally friendly, degradable oil which can be used in ambient temperatures between -25 $^\circ\text{C}$ and +50 $^\circ\text{C}.$

If COP OIL is not available then the oil should have the following properties:

- Use an oil with good lubricating properties intended for compressed air tools.
- Depending on ambient temperature, the oil should have the following viscosity grades if the viscosity index (VI) is about 100:

Ambient temperature °C	Viscosity grade (ISO 3448)
-30 till +-0	VG 32 - 68
-10 till +20	VG 68 - 100
+10 till +50	VG 100 - 150
The oil must have additives that prevent foam formation.	

ASTM D 2783	Min. 250 kg
ASTM D 4172 (40 kg)	Max. 0.5 mm
The oil must have good adhesion canacity	

- The oil must have good adhesion capacity.
- The oil must have additives that prevent foam formation.

13.11.4 Grease nipples and CLS

	Working temperature °C
Universal grease NLGI 2 Lithium/molybdenum additives	Max. 100 °C
Synthetic sodium or calcium grease	Max. 140 °C

Table 18: Grease nipples and CLS

13.11.5 Rotation unit

Grease: lithium complex, mineral oil based EP grease. NLGI 2, Viscosity 300-600 cSt at 40 °C. Mechanically stable. Intended for use in vibration applications (Shell: Limona LX2).

NOTE: Do not use other types of grease, as some of them are not miscible.

13.11.6 Traction gears, carrier rollers

Use mineral-based transmission oil with EP additive to ISO VG class 220. Meets ACMA specification for R & O EP oils. Classified as ISO-L-CKC according to ISO 6743/6 and SS-ISO/TR 3498.

13.11.7 Oil recommendations for two-stage compressor

Atlas Copco recommends only using Atlas Copco PAROIL for the two-stage compressors. Use of another oil is at customer's own risk

The type of PAROIL should correspond to the table below. If the ambient temperature permits, then PAROIL S XTREME should be used in the first instance.

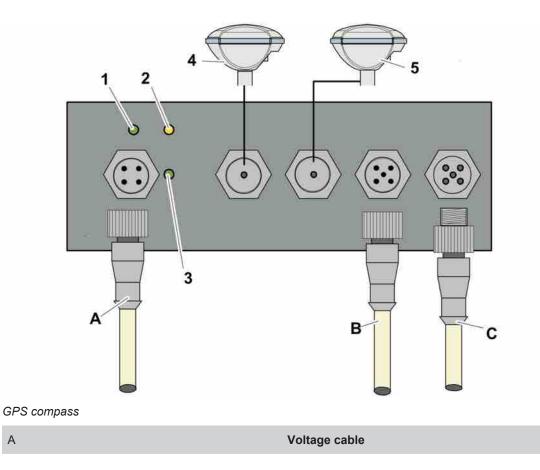
Ambient temperature	Oil
Below +30 °C	PAROIL S
Above -10 °C	PAROIL S EXTREME

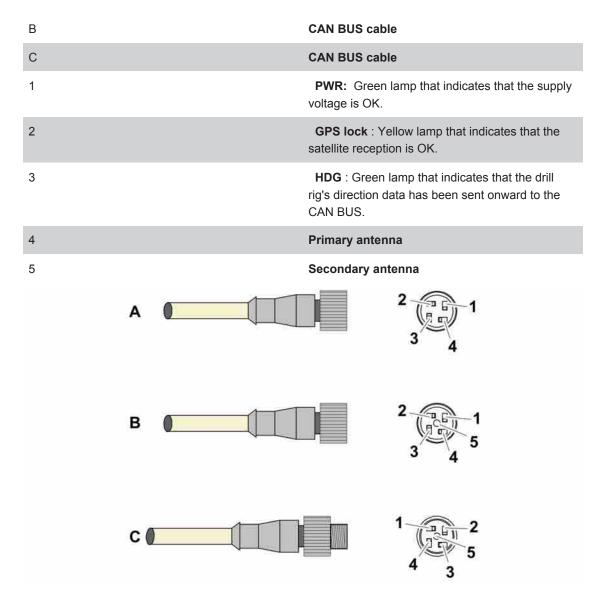
Never mix oils of different brands.

13.11.8 Coolant

Never mix propylene with ethylene glycol. Use only ready-mixed coolant that meets ASTM with DG210.

14 Options

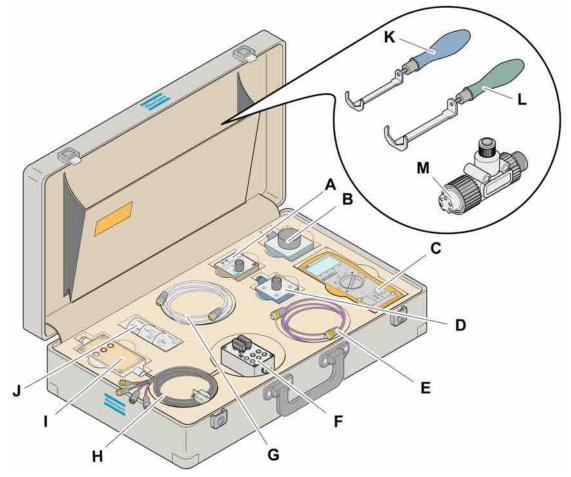

14.1 GPS


14.1.1 General

The GPS system consists of two antennas and one receiver. The antennas are fitted at a distance of 0.5 metres apart. There must not be any permanent fixture between the antennas and the horizon, apart from the drill rig's feeder.

14.1.2 General data

Voltage	24V DC
Current usage	0,2 A
Operating temperature	+70°C30°C
Enclosure class	IP65
Precision	<0.3° rms
Start-up time	<60 s
CAN test report form	CAN Open


GPS cables

Wire	Conductor 1	Conductor 2	Conductor 3	Conductor 4	Conductor 5
A	brown 24V	white GND	blue Tx data	black Rx data	•
В	-	white 24V	blue GND	black CAN HI	grey CAN LO
С	-	white 24V	blue GND	black CAN HI	grey CAN LO

NOTE: * The voltage cable's 24V conductor (1) has a 1 A fuse connected.

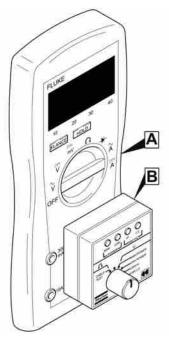
14.2 Service equipment

14.2.1 Service tool bag RCS

Service bag

A	CAN tester
В	Resolver tester
C	Multimeter
D	Encoder tester
E	CAN Open cable
F	I/O tester
G	Signal cable
Н	Test cables
I	Test box
J	Connectors
К	Torque tools
L	Torque tools
Μ	Contact

The service bag is used for fault finding on rigs equipped with Atlas Copco RCS (Rig Control System).


14.2.2 Checking the power supply and the CAN network

General

The power supply for the module, the CAN power supply and CAN communication can be measured and checked using the CAN tester.

NOTE: Always use the torque tools to tighten cable connections.

- MAIN POWER lights if power is being supplied to the module.
- CAN POWER comes on if there is a voltage present to the CAN network.
- CAN HI and CAN LO flash while communication is in progress on the CAN network.

CAN tester

А	Multimeter	
В	CAN tester	
Pin		Function
1		Screen / Shield
2		CAN +
3		CAN -
4		CAN HI
5		CAN LO

Table 19: Pin configuration, CAN inputs and outputs, I/O modules

Pin	Function
1	NC / not connected
2	CAN +
3	CAN -
4	CAN HI
5	CAN LO

Table 20: Pin configuration, CAN inputs and outputs, other modules

Mount the tester on the multimeter. Make certain the pins are positioned correctly as indicated by the colour coding. The red pin goes to V/Ohm on the multimeter. Set the multimeter range to DC Volt.

CAN measurement

Connect the tester's 5-pin connectors to the CAN network requiring measurement:

- Decoder: contact X3 or X4.
- Display, application and master modules: connector X2, X3 or X4.
- I/O modules: contact X1 or X19.
- Resolver modules: contact X3 or X4.

Normal state

- Supply voltage (MAIN POWER) 24-28 V (shines green).
- CAN power supply (CAN POWER) 20-24V (shines green).
- CAN communication (CAN HI), about 2.5V (flashes green).
- CAN communication (CAN LO), about 2.3 V (flashes green).

Fault indication

- CAN HI glows red constantly for short circuit to ground.
- CAN HI glows green constantly for voltage above 3.5 V.
- CAN LO glows green constantly for short circuit to ground.
- CAN LO glows red constantly for voltage above 3.5 V.
- If neither CAN HI nor CAN LO is lit, then there is no communication even though power is being supplied to CAN.
- If any light is flashing red, then CAN communication is at the wrong level or is inverted.

Supply voltage

Connect the tester's 5-pin connector to the module's power supply:

- I/O modules: contact X25. 7-pin contact. Use enclosed T-cross.
- Other modules: connector X1. 4-pin connectors.

The power supply (MAIN POWER) must be 24-28V (lights green).

CAN cable test

NOTE: System is to be shut down.

- Mount the tester on the multimeter. Make sure the pins are positioned correctly according to the colour markings. Red pin to V/Ohm on the multimeter. Set the multimeter measuring range to ohms.
- 2. Connect the tester's 5-pin connectors to the CAN network requiring measurement:

Decoder: contact X3 or X4.

Display, application and master modules: connector X2, X3 or X4.

I/O modules: contact X1 or X19.

Resolver modules: contact X3 or X4.

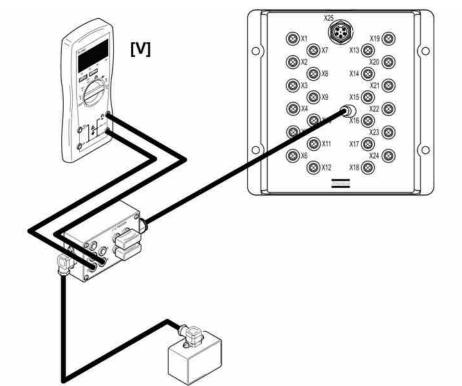
 Select CABLE TEST on the CAN tester. The multimeter should read about 60-65 Ohms if the cable is intact.

Fault indication

If the multimeter reads 120 Ohm, the end plug is missing or there is a break in a cable.

NOTE: Because of the internal resistance in the tester, the multimeter reads about 100 *k*Ohm if the cables are not connected or if there is an open circuit in one of the cables.

14.2.3 I/O module


Checking the digital inputs

There are two digital inputs designated A and B at each contact Normally, the signal is 0V for an open contact and +24V for a closed contact.

Pin	Function
1	+24V DC
2	Signal B
3	GND
4	Signal A
5	GND

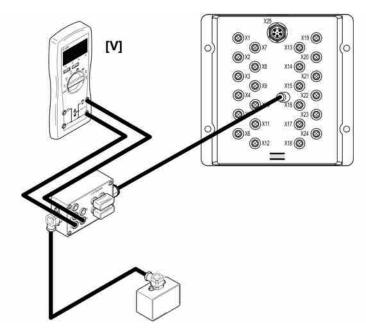
Table 21: Pin configuration

Measuring voltage/power

Connecting the I/O tester

- 1. Connect the I/O tester between the I/O module input and the guard as illustrated.
- 2. Measure the voltage according to the table.

Checking the digital outputs


There are two digital outputs designated A and B in each contact.

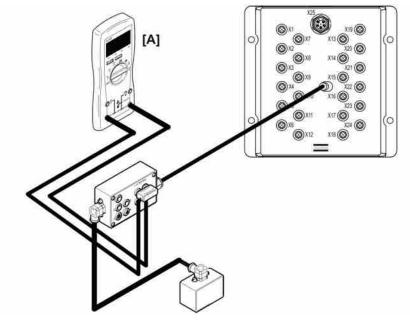
Pin	Function
1	+24V DC
2	Signal B
3	GND
4	Signal A
5	GND

Table 22: Pin configuration

Measuring voltage/power

1. Connect the 5-position connector on the I/O tester between the output of interest on the I/O module and the valve as illustrated.

Connecting the I/O tester


- Connect the 5-position connector on the I/O tester to an unoccupied 5-position connector in the I/O module.
- 3. Connect the multimeter between GND and the +A or +B output that is of interest.
- 4. Activate the function. Normally, the multimeter will read ~ 24V.

Fault indication

If the valve is not activated, there is an open circuit in the cable running to the valve or in the coil in the valve.

Measuring current

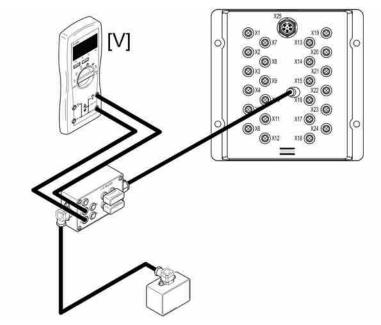
1. Connect the 5-position connector on the I/O tester between the output of interest on the I/O module and the valve as illustrated.

Connecting the I/O tester

- 2. Connect the multimeter in series with the +A or +B output that is of interest.
- 3. Activate the function. Normally, the multimeter is to read ~1A.

Fault indication

If the multimeter reads 0.00A and the solenoid coil diode is lit, there is an open circuit in the coil in the valve.


Checking the analogue inputs

Pin	Function
1	+24V DC
2	0-5V
3	GND
4	4-20mA
5	+5V DC

Table 23: Pin configuration

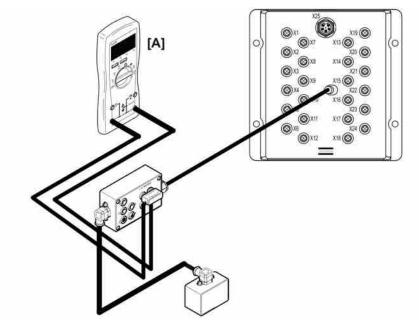
Measuring voltage/power

1. Connect the 5-position connector on the I/O tester between the input of interest on the I/O model and the sensor as illustrated.

Connecting the I/O tester

2. Measure currents according to the table.

Checking the PWM outputs


There are two PWM outputs designated A and B in each contact.

Pin	Function
1	
2	out +B
3	out -B
4	out +A
5	Out -A

Table 24: Pin configuration

Measuring current

1. Connect the 5-position connector on the I/O tester between the output of interest on the I/O module and the valve as illustrated.

Connecting the I/O tester

- 2. Connect the multimeter in series with the +A or +B output that is of interest.
- 3. Actuate the function and check that the current corresponds with the actuated value on the display.

Encoder inputs (pulse sensor) X12, X18

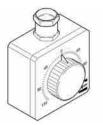
Each encoder connector has two signals, A and B.

Pin	Function
1	+24V DC
2	В
3	GND
4	A

Pin	Function
5	GND

Table 25: Pin configuration

14.2.4 Resolver module


Checking resolver inputs X6 - X9

Pin configuration:

Pin	Function
1	Ref +
2	Ref -
3	Sine signal
4	Sine GND
5	Cosine signal
6	Cosine GND

Table 26: Pin configuration

 Connect the resolver tester to the relevant cable. Turn the test sensor slowly and check that the angle shown on the sensor menu changes.

Resolver tester

. .

...

If the angle changes, the sensor on the boom is faulty.

If the angle does NOT change, the cable on the boom must be checked.

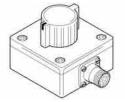
Connect the test sensor and test cable directly to the resolver module input. Turn the test sensor slowly and check that the angle on the sensor menu changes.

.

If the angle changes, the cable on the boom is faulty.

If the angle does NOT change, the resolver module is faulty.

.....


Checking	the encoder	input (I	Puise s	ensor I	nput) X10	

Pin	Function
1	+15V
2	+15V
3	Signal A
4	GND

Pin	Function
5	Signal B
6	GND

Table 27: Pin configuration

1. Connect the encoder tester to the end of the relevant cable. Turn the test sensor slowly and check that the length measurement shown on the sensor menu changes.

Encoder tester

If it changes, the sensor on the boom is faulty.

If it does NOT change, the cable on the boom must be checked.

2. Connect the test sensor with test cable directly to the resolver module input. Turn the test sensor slowly and check that the length measurement shown on the sensor menu changes.

If the measured value changes, the cable on the boom is faulty.

If the measured value does NOT change, the resolver module is faulty.

Checking analogue input channels X11 and X12

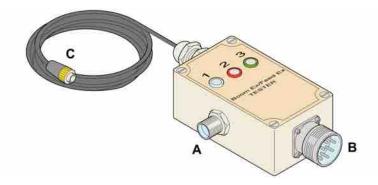

Pin	Function
1	GND
2	+ 4.5V power supply out
3	Signal in
4	(Not used)
5	(Not used)

Table 28: Pin configuration for input channel X11

Pin	Function
1	GND
2	+ 15V power supply out
3	Signal in
4	(Not used)
5	(Not used)

Table 29: Pin configuration for input channel X12

1. Connect the resolver module connector X11 or X12 to test box connector (B).

Test box

- 2. Connect the multimeter to test box pins 2 and 3.
- Set the multimeter to DC voltage (=). It should read 4.5V on connector X11 and 15V on connector X12.

If the multimeter reading is 0V there may be a fault in the signal cable or resolver module. Continue fault finding as follows:

- a. Connect the cable (C) on the test box to resolver module input X11 or X12 and measure between 1 and 2.
- b. Recheck the multimeter reading. If it is 0V, there is a fault on the resolver module input (X11 or X12).

14.2.5 Replacing the module

- 1. Make certain the module has the correct address plug and that the end plug (if any) is mounted in place.
- 2. When any of the application module, I/O or resolver module is replaced, the program must be read into the system again.
- Insert the USB memory stick with the program into the USB port and start the RCS system.
- 4. When the program has been fully loaded, the following will appear on the display: "Remove card and restart the system!"
- Switch off the system remove the USB memory stick and start the system once again.

NOTE: Make certain that electric power is present at the rig or that the diesel engine is running before loading the program. Avoid starting the diesel engine while the program is being loaded. Never turn off the system while the program is being loaded.

14.3 RC - Reverse Circulation

14.3.1 General

Most maintenance work consists of checking leakage and wear, as well as replacing wear parts. All parts that come into contact with cuttings are wear parts. The components that wear the most are the inner tubes and deflectors, the former in particular.

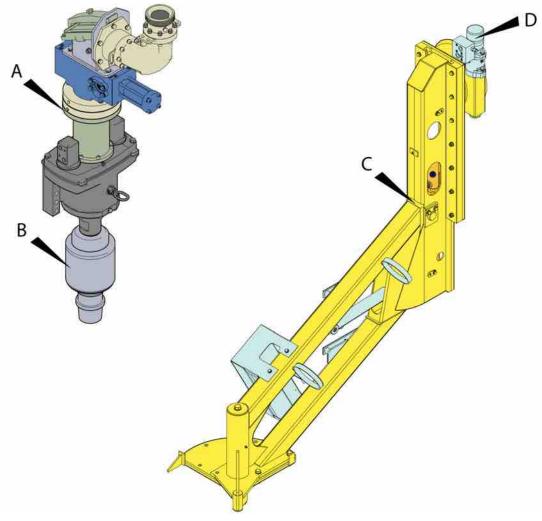
There are also a number of lubrication points.

A general inspection is recommended every week or every 50 engine hours.

Before any component is unscrewed the system should be depressurised. Failure to do so would cause the O-rings to be sucked out from their grooves when the air escapes past them.

For maintenance of the rotation unit, see the separate documentation.

For maintenance of the down-the-hole rock drill, see the supplier's documentation.


14.3.2 Lubrication

The lubrication points are on the arm, the rotary actuator, the outlet swivel and the air swivel. For the rotary actuator, lubrication is recommended every two months or every 500 engine hours. Other points must be lubricated daily.

Risk of injury

Special tools are required for service: Article number 9495 6730 00 - 6x screws, 12:9 quality when fitting the adapter.

Lubrication points

A	Outlet swivel
В	Air swivel
C	Shaft
D	Rotary actuator

The air swivel should be lubricated carefully. A maximum of a couple of presses with grease in each nipple is sufficient. Too much lubrication can pressurise the seals and lead to heat development which damages seals and bearings.

In addition, lubrication is recommended after cleaning the equipment.

Recommended Lubricants:

- Castrol APX T Grease
- Shell Albida Grease HD 2
- Fuchs Renolite LX- EP2
- BP Energrease LC 2

14.3.3 Maintenance of components

Down-the-hole rock drill

Good lubrication, clean air and regular maintenance are critical factors for the service life of the down-the-hole rock drill.

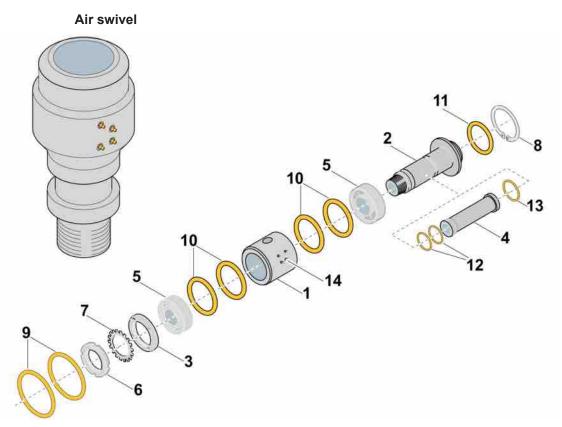
The most common cause of breakdown is a defective inner tube. The inner tube tends to wear at the lower end first. If it is allowed to become too short or too thin then the pipe's end breaks and jams under the piston during the down stroke, which leads to piston failure and cylinder damage.

Most inner tubes for down-the-hole rock drills have a wear indicator that shows when it is time for replacement. It can be seen and/or felt inside the bottom of the down-the-hole rock drill when the drill bit is removed. Often, this is obvious when it becomes more difficult to obtain the sample through the drill bit.

The service life for the down-the-hole rock drill's inner tube can vary greatly with a probable average life of around 800 m, but in some abrasive rock types the service life can be as low as 300 m.

Drill pipe

The drill pipes wear on the outside and need to be measured if you are worried about size. The diameter is measured at the weld seam because this is the weakest point when it is worn. For a drill pipe of 114.3 mm (4.5") the time for replacement is at a size of 109 mm. A pipe of 101.6 mm (4") needs to be replaced at about 96 mm. Underdimensioned drill pipes could fail which could lead to costly losses.


Drill pipes and inner tubes, as well as inner tubes for adapters, are wear parts. The degree of wear depends largely on rock conditions.

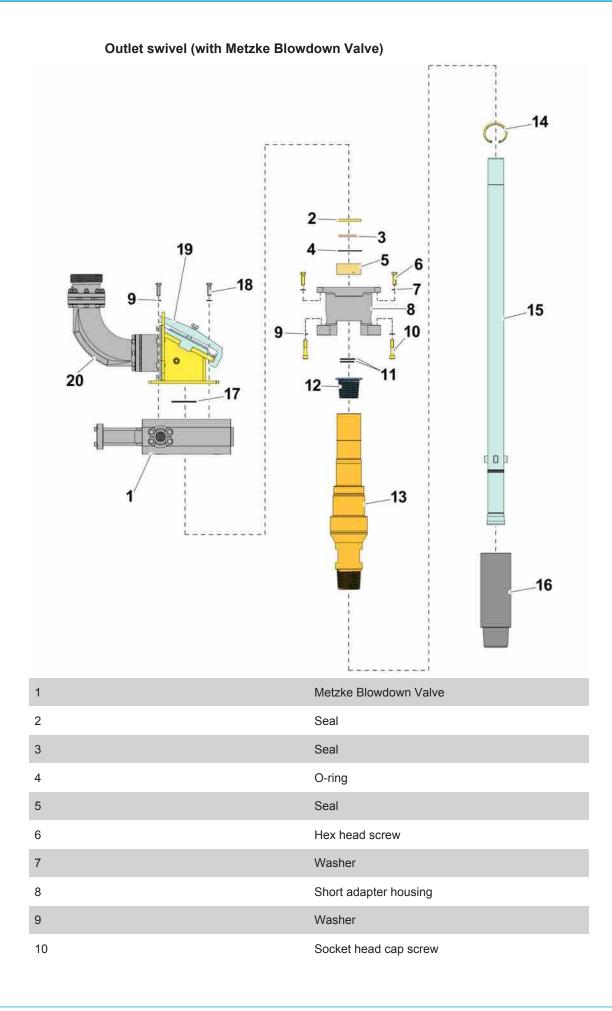
The inner tube on top of the drill pipe is changed by removing the circlip. A damaged inner tube results in considerable loss of pressure and is therefore easy to diagnose.

Risk of injury

A damaged inner tube causes a considerable increase in the wear of other parts. Stop drilling immediately if you suspect a damaged inner tube.

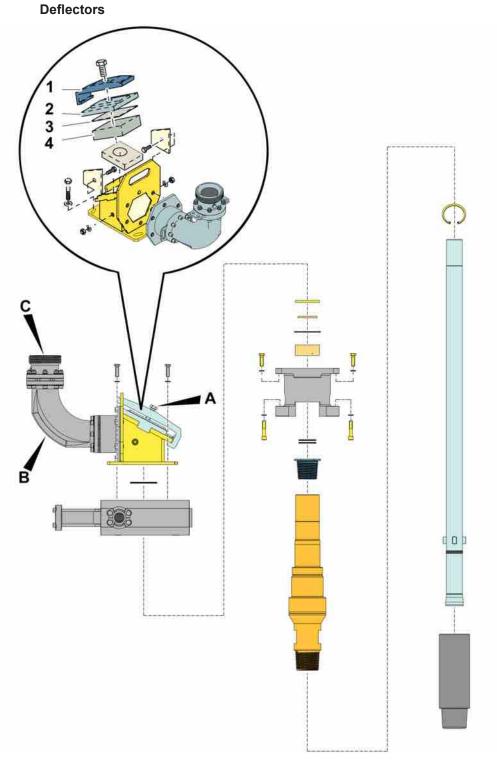
Normal maintenance includes lubrication of seals and bearings via the 4 grease nipples (14) on the shell (1). This must be carried out daily or every 10 engine hours. A maximum of a couple of presses with grease in each nipple. **DO NOT OVER LUBRICATE -** Too much lubrication can pressurise the seals and lead to heat development which damages seals and bearings.

The normal service life of a seal can be up to 2000 hours, and the service life for shaft and bearing may be many times this service life. However, seal replacement is unavoidable.


During dismantling, the lock nut (6), retaining washer (7) and holder washer (3) are removed so that the shell (1) can be removed from the shaft (2). Check the seal's running surfaces on the shaft. If it is very grooved then the shaft is replaced. Check the other parts in terms of wear/damage and replace if necessary. Replace seals and assemble.

Some consider it necessary to tack weld the air swivel's shaft (2) onto the rotation unit's shaft. If this is done then brazing lugs must be used on both shafts. **The seam between the shafts must not be welded.**

Risk of injury


Tightening must be secure before tack welding.

11	O-ring
12	Spindle adapter
13	Spindle DHR6RC
14	Circlip
15	Inner tube
16	Outer tube
17	O-ring
18	Hex head screw
19	Deflector 1
20	Deflector 2

Seal 5 on the outlet swivel requires regular lubrication. There is a grease nipple for this on the adapter housing (8). Grease must be applied daily to this seal (5) via the grease nipple.

Replace the seals when they start leaking. Leaking cutting seals can cause water and dirt penetration in the rotation unit. The sealing sleeve around which the seals rotate may also require replacing if rutted.

The first deflector (A) meets all the force from the sample flow, which can reach speeds of up to 200 m/s, and is therefore exposed to hard wear. The deflector has a heavy ceramic block (4) which is easy to replace by removing the bridge (1) and the cover plate (2). As the service life varies greatly depending on rock conditions this block should be checked every month or every 250 engine hours, until a replacement programme has been established.

The second deflector (B) has a longer service life, but this also depends on rock conditions.

The connection cover plate (C) becomes worn and is normally checked when replacing the sample hose.

Ensure that all screws are at least 8.8 in strength class and that all nuts have Nylock for the reassembly of these components.

Discharge System

The roller for the sample hose, fitted on the feeder, requires no maintenance as it is made of nylon.

The end of the sample hose needs to be replaced on occasion. The hose is often used until it breaks, in which case it must be replaced immediately. The hose must have safety sleeving fitted. When fitting a hose it is important to ensure that the clamps engage in the retaining groove in the collar.

The sample hoses must have hose protection (sleeving) fitted on both ends of the hose in the event of a functional breakdown. The hose protection must be attached with shackles onto the attachment points on the hubs.

DANGER

Serious injury or death

Burst hoses can cause personal injuries.

Cyclone and splitter

The cyclone has replaceable wear plates inside the shell and inlet. These need to be monitored and replaced when they are badly worn.

The cone splitter's knife valves have rope seals. If the sample begins to leak this seal can be tightened until the leak stops. This is performed by tightening the 8 screws holding the seal holder in place. This can be performed several times before the seal needs replacing. Be careful not to tighten too hard as this could cause the knife blade to lock. The rope seals must be replaced as necessary.

About inner tubes

All components from the rotation head shaft down contain an inner tube.

Along with deflectors the inner tubes are the components that wear the most. There are inner tubes in the down-the-hole hammer, the drill pipes, the different adapters, the air swivel as well as the shaft that runs through the rotation unit and rotation head. It is not possible to measure the remaining service life of an inner tube, which often leads to the inner tubes being used until they break. Apart from the tube in the rotation unit, a damaged inner tube causes significant pressure loss and it is therefore easy to diagnose. This may lead to the surrounding components being damaged, and at best lead to continued drilling not being possible.

All inner tubes are replaceable and are removed through the top of the component by removing the component from the drill string, removing the circlip and sliding the tube out.

The inner tube in the rotation head is hardened and is much thicker than other inner tubes so it lasts longer, but visual inspection (with regard to wall thickness) is important when possible (if the swivel is removed or if the seals in the rotation head are replaced).

The cost of a few inner tubes is often made worthwhile by the reduced downtime that the replacement of all tubes can result in when one of them needs to be replaced.

All inner tubes are sealed with O-rings in order to separate the high-pressure air from return air. It is critical that these O-rings are in place and in good condition. When you access them it is prudent to replace any O-rings whether or not they are worn.

14.3.4 Blow adapters

Blowdown adapter

Certain RC machines from Atlas Copco are equipped with a blowdown system from Metzke. It is possible to screw blowdown system loosely on the drill string on RC rigs without one. The blowdown adapter directs the compressed air down through the inner tubes and in this way clears any blockages and forces return air to the outside of the drill pipes. We recommend contacting an Atlas Copco service engineer before making any changes to the rig.

Blow-up adapter

A DANGER

Serious injury or death

There are blow-up adapters on the market that direct the compressed air upwards through the deflectors and the sample hose to the cyclone. It is very easy to subject the sample hose to damage, which may also cause injury if anyone is in the vicinity. Due to this you are advised against using blow-up adapters.

14.3.5 Metzke Blowdown Valve

The Metzke Blowdown Valve directs the compressed air down through the inner tube and so clears away any blockages and forces return air to the outside of the drill pipe.

WARNING

Serious injury

The blowdown valve works with air under high pressure. Air under high pressure is extremely dangerous.

- Remove or isolate the air or hydraulic inputs before service or maintenance.
- The valve has internal moving parts that can be dangerous due to pressure forces. Do not position any part of the body or any objects in the valve ports during tramming.

A daily visual inspection should be carried out in order to check for abnormal wear, hydraulic leaks and damaged components. Replace parts when necessary.

The Metzke Blowdown Valve does not have any lubricating points.

The spool sleeve, upper and lower inserts, and seals will wear over time - this is normal. With this in mind, regular inspections must be made through the top of the valve. It is essential that these parts are replaced before being worn. Any further wear will cause considerable damage to other components in the valve.

The hardened inserts have a goods thickness of 6 mm and an original inside diameter (ID) of 50 mm. They should be replaced if the inside diameter exceeds 58-60 mm.

Check for any uneven wear on the inserts as this can indicate that the main air seals are leaking.

It is essential the inner pipes included in components fitted in the system after the blowdown valve are in good condition. Inner pipes in bad condition can impact negatively on test flow and cause extra wear to the blowdown valve.

There is an indicator hole in the cylinder housing. If oil or air starts to leak from this hole, it means the cylinder rod seal is leaking and must be replaced.

Risk of injury

Serious damage or lethal injuries can occur if changes or repairs are performed on this system by unauthorised persons.

We recommend always getting in touch with a qualified service engineer before performing any work on this system.

14.3.6 Fault finding in the event of air leakage

If the down-the-hole rock drill appears to be obtaining less pressure than expected, or if there are difficulties with sample return, the most likely cause will be missing O-rings or holes in an inner tube.

A circular cover plate is used during fault finding (test sub - check in spare parts list for correct part number) that blocks the flow of compressed air between the inner and outer tubes so that compressed air is contained. Look in the spare parts list for the correct part number.

A drill rod or rotation head is screwed on by hand and the air is switched on. If air is flowing from the centre of the cover plate then this indicates that O-rings are either missing or are in poor condition, or that there is a hole in one of the inner tubes above the cover plate. If the leaking air hisses out then the problem is probably missing O-rings, if the air is blowing out then it is probably a hole in an inner tube.

By using the method of elimination, the adapter can be moved up or down on the drill string in order to determine which component is generating the problem. As each step in the test is taken, one component is removed and checked until you have found which one is defective. The problem must be rectified, i.e. the part must be replaced or repaired, and a test performed to confirm that this was the only problem. It is important not to assume that a particular component is faultless - all must be tested in a logical sequence until the problem is found.

14.3.7 Conversion to normal drilling

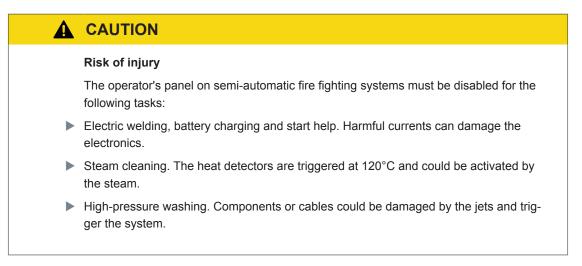
If there is a requirement to convert from RC drilling to normal drilling, there are several ways to achieve this, each with a different scope:

- A normal down-the-hole rock drill is used on RC tubes together with an adapter for API threads. A stop plug is also fitted in the inner tubes at the down-the-hole rock drill or at the spar adapter in order to prevent air from flowing out through the inner tubes. This is not an option in the long-term because the increased vibration tends to damage the inner tubes.
- The inner tubes can be removed from the RC tubes. The deflectors and sample hoses can also be removed. If the sample hose is removed then the deflectors must also be removed and vice versa.

The RC tubes are removed and replaced with normal drill pipes. The air swivel is removed and replaced with an adapter. The deflectors and sample hose can be removed. An adapter is fitted on the rotation head for the air supply to the drill string. This is a longer-term adaptation and is used if normal drilling is to be carried out over several weeks or more.

14.4 Fire suppression system

14.4.1 Daily checks and maintenance


If there is a pressure gauge fitted, then check that the needle on the pressure meter for the containers is within the green zone.

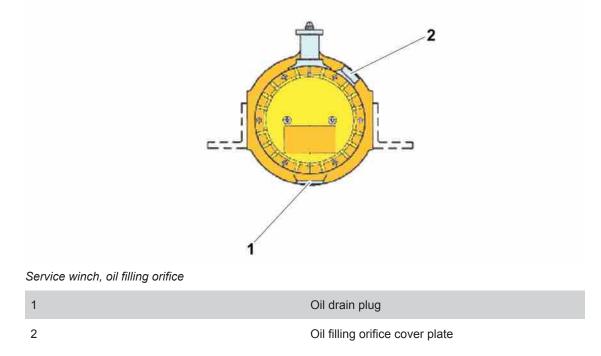
On **semi-automatic fire fighting systems**, check that the LEDs are working as specified in the Operator's Manual. Perform a test - press the green test button (7) for at least 1 second. The diodes come on successively and conclude with an alarm test of signal and lamp.

14.4.2 Annual maintenance

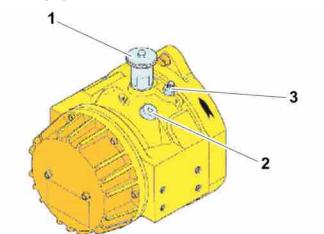
In many countries, insurance companies require proof that a qualified engineer has inspected and approved the fire fighting system annually. We recommend checking with your insurance company to find out if they have any requirements concerning this system.

14.4.3 Electric Welding, Steam Cleaning and High Pressure Cleaning

Once the semi-automatic fire fighting system is enabled again, make sure the LEDs and the system work as specified in the Operator's Manual. Perform a test - press the green test button on the operator's panel for at least 1 second. The diodes come on successively and conclude with an alarm test of signal and lamp. A description of the operator's panel can be found in the Operator's Manual


14.5 Service Winch

14.5.1 Cleaning


Always clean the winch after use.

14.5.2 Transmission

Check the oil level regularly. Replace the oil every 8000 engine hours.

The winch gear holds 0.5 L oil. Drain out the old oil by removing the oil drain plug (1). Pour in new oil into the winch transmission via the oil filling orifice cover plate. (2)

14.5.3 Disengagement device

Service Winch

1	Disengagement device
2	Oil filling orifice cover plate
3	Drum brake adjusting screw

Lubricate the disengagement device (1) every 1000th engine hour.

14.5.4 Adjusting - Drum brake

Serious injury

WARNING

Check regularly that the brake is correctly adjusted. When the drum is disengaged there is a risk that the cable may unreel uncontrollably.

Increase braking force

- 1. Undo the lock nut on the adjusting screw (3).
- 2. Rotate the brake nipple clockwise one quarter turn (3).
- 3. Tighten the locking nut.

Decrease braking force

- 1. Undo the lock nut on the adjusting screw (3).
- 2. Rotate the brake nipple anticlockwise one quarter turn (3).
- 3. Tighten the locking nut.

14.5.5 Cable

Risk of injury

A CAUTION

Check the cable regularly. Do not use the winch if the cable is damaged.

2015-12-17 | No: 713991051.3

